
LLVM Language
Reference Manual

1

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

Table of Contents

2

I Abstract 11

II Introduction 11

III Identifiers 13

IV High Level Structure 15
4.1 Module Structure .. 15

4.2 Linkage Types .. 16

4.2.1 'private' Linkage ... 16

4.2.2 'linker_private' Linkage .. 16

4.2.3 'linker_private_weak' Linkage .. 16

4.2.4 'linker_private_weak_def_auto' Linkage ... 16

4.2.5 'internal' Linkage ... 16

4.2.6 'available_externally' Linkage .. 16

4.2.7 'linkonce' Linkage ... 17

4.2.8 'common' Linkage ... 17

4.2.9 'weak' Linkage .. 17

4.2.10 'appending' Linkage ... 17

4.2.11 'extern_weak' Linkage ... 17

4.2.12 'linkonce_odr' Linkage ... 18

4.2.13 'weak_odr' Linkage ... 17

4.2.14 'externally visible' Linkage .. 18

4.2.15 'dllimport' Linkage ... 18

4.2.16 'dllexport' Linkage ... 18

4.3 Calling Conventions .. 19

4.4 Named Types .. 21

4.5 Global Variables ... 21

4.6 Functions .. 22

4.7 Aliases ... 24

4.8 Named Metadata ... 24

4.9 Parameter Attributes .. 24

4.10 Function Attributes ... 27

4.11 Garbage Collector Names ... 26

4.12 Module-Level Inline Assembly .. 30

Table of Contents

3

4.13 Data Layout .. 30

4.14 Pointer Aliasing Rules ... 32

4.15 Volatile Memory Accesses ... 33

4.16 Memory Model for Concurrent Operations .. 33

4.17 Atomic Memory Ordering Constraints .. 35

V Type System 37
5.1 Type Classifications .. 37

5.2 Primitive Types .. 37

5.2.1 Integer Type .. 37

5.2.2 Floating Point Types .. 38

5.2.3 X86mmx Type ... 38

5.2.4 Void Type ... 39

5.2.5 Label Type .. 39

5.2.6 Metadata Type .. 39

5.3 Derived Types .. 39

5.3.1 Aggregate Types ... 40

5.3.1.1 Array Type .. 40

5.3.1.2 Structure Type ... 41

5.3.1.3 Opaque Structure Types ... 42

5.3.1.4 Vector Type .. 43

5.3.2 Function Type ... 41

5.3.3 Pointer Type .. 43

VI Constants 45
6.1 Simple Constants ... 45

6.2 Complex Constants ... 46

6.3 Global Variable and Function Addresses ... 47

6.4 Undefined Values .. 47

6.5 Trap Values .. 50

6.6 Addresses of Basic Blocks ... 52

6.7 Constant Expressions .. 52

VII Other Values 57
7.1 Inline Assembler Expressions ... 57

7.2 Metadata Nodes and Metadata Strings .. 58

Table of Contents

4

VIII Intrinsic Global Variables 61
8.1 The 'llvm.used' Global Variable .. 61

8.2 The 'llvm.compiler.used' Global Variable .. 61

8.3 The 'llvm.global_ctors' Global Variable .. 62

8.4 The 'llvm.global_dtors' Global Variable .. 62

IX Instruction Reference 63
9.1 Terminator Instructions .. 63

9.1.1 'ret' Instruction ... 63

9.1.2 'br' Instruction .. 64

9.1.3 'switch' Instruction ... 65

9.1.4 'indirectbr' Instruction ... 66

9.1.5 'invoke' Instruction ... 67

9.1.6 'unwind' Instruction ... 69

9.1.7 'resume' Instruction ... 69

9.1.8 'unreachable' Instruction ... 70

9.2 Binary Operations ... 70

9.2.1 'add' Instruction ... 71

9.2.2 'fadd' Instruction ... 72

9.2.3 'sub' Instruction ... 72

9.2.4 'fsub' Instruction ... 73

9.2.5 'mul' Instruction ... 74

9.2.6 'fmul' Instruction ... 75

9.2.7 'udiv' Instruction ... 76

9.2.8 'sdiv' Instruction ... 76

9.2.9 'fdiv' Instruction ... 77

9.2.10 'urem' Instruction ... 78

9.2.11 'srem' Instruction ... 79

9.2.12 'frem' Instruction ... 80

9.3 Bitwise Binary Operations ... 80

9.3.1 'shl' Instruction ... 80

9.3.2 'lshr' Instruction ... 81

9.3.3 'ashr' Instruction ... 82

9.3.4 'and' Instruction ... 83

9.3.5 'or' Instruction .. 84

Table of Contents

5

9.3.6 'xor' Instruction ... 85

9.4 Vector Operations ... 86

9.4.1 'extractelement' Instruction .. 86

9.4.2 'insertelement' Instruction .. 87

9.4.3 'shufflevector' Instruction .. 87

9.5 Aggregate Operations ... 88

9.5.1 'extractvalue' Instruction ... 89

9.5.2 'insertvalue' Instruction ... 89

9.6 Memory Access and Addressing Operations ... 90

9.6.1 'alloca' Instruction ... 90

9.6.2 'load' Instruction ... 91

9.6.3 'store' Instruction ... 93

9.6.4 'fence' Instruction ... 94

9.6.5 'cmpxchg' Instruction ... 95

9.6.6 'atomicrmw' Instruction ... 97

9.6.7 'getelementptr' Instruction .. 98

9.7 Conversion Operations ... 101

9.7.1 'trunc .. to' Instruction ... 101

9.7.2 'zext .. to' Instruction ... 102

9.7.3 'sext .. to' Instruction ... 102

9.7.4 'fptrunc .. to' Instruction .. 103

9.7.5 'fpext .. to' Instruction ... 104

9.7.6 'fptoui .. to' Instruction ... 105

9.7.7 'fptosi .. to' Instruction ... 105

9.7.8 'uitofp .. to' Instruction ... 106

9.7.9 'sitofp .. to' Instruction ... 107

9.7.10 'ptrtoint .. to' Instruction .. 107

9.7.11 'inttoptr .. to' Instruction .. 108

9.7.12 'bitcast .. to' Instruction .. 109

9.8 Other Operations ... 110

9.8.1 'icmp' Instruction ... 110

9.8.2 'fcmp' Instruction ... 112

9.8.3 'phi' Instruction ... 114

9.8.4 'select' Instruction ... 115

Table of Contents

6

9.8.5 'call' Instruction ... 116

9.8.6 'va_arg' Instruction ... 118

9.8.7 'landingpad' Instruction ... 119

X Intrinsic Functions 121
10.1 Variable Argument Handling Intrinsics .. 122

10.1.1 'llvm.va_start' Intrinsic ... 123

10.1.2 'llvm.va_end' Intrinsic ... 123

10.1.3 'llvm.va_copy' Intrinsic ... 124

10.2 Accurate Garbage Collection Intrinsics ... 124

10.2.1 'llvm.gcroot' Intrinsic ... 125

10.2.2 'llvm.gcread' Intrinsic ... 125

10.2.3 'llvm.gcwrite' Intrinsic ... 126

10.3 Code Generator Intrinsics .. 127

10.3.1 'llvm.returnaddress' Intrinsic ... 127

10.3.2 'llvm.frameaddress' Intrinsic ... 127

10.3.3 'llvm.stacksave' Intrinsic ... 128

10.3.4 'llvm.stackrestore' Intrinsic ... 129

10.3.5 'llvm.prefetch' Intrinsic ... 129

10.3.6 'llvm.pcmarker' Intrinsic ... 130

10.3.7 'llvm.readcyclecounter' Intrinsic .. 130

10.4 Standard C Library Intrinsics .. 131

10.4.1 'llvm.memcpy.*' Intrinsic ... 131

10.4.2 'llvm.memmove.*' Intrinsic ... 132

10.4.3 'llvm.memset.*' Intrinsic ... 133

10.4.4 'llvm.sqrt.*' Intrinsic ... 134

10.4.5 'llvm.powi.*' Intrinsic ... 135

10.4.6 'llvm.sin.*' Intrinsic .. 136

10.4.7 'llvm.cos.*' Intrinsic .. 136

10.4.8 'llvm.pow.*' Intrinsic .. 137

10.4.9 'llvm.exp.*' Intrinsic .. 138

10.4.10 'llvm.log.*' Intrinsic .. 138

10.4.11 'llvm.fma.*' Intrinsic .. 139

10.5 Bit Manipulation Intrinsics .. 140

10.5.1 'llvm.bswap.*' Intrinsics .. 140

Table of Contents

7

10.5.2 'llvm.ctpop.*' Intrinsic ... 140

10.5.3 'llvm.ctlz.*' Intrinsic ... 141

10.5.4 'llvm.cttz.*' Intrinsic ... 142

10.6 Arithmetic with Overflow Intrinsics .. 142

10.6.1 'llvm.sadd.with.overflow.* Intrinsics ... 143

10.6.2 'llvm.uadd.with.overflow.* Intrinsics ... 143

10.6.3 'llvm.ssub.with.overflow.* Intrinsics ... 144

10.6.4 'llvm.usub.with.overflow.* Intrinsics ... 145

10.6.5 'llvm.smul.with.overflow.* Intrinsics ... 146

10.6.6 'llvm.umul.with.overflow.* Intrinsics ... 147

10.7 Half Precision Floating Point Intrinsics ... 148

10.7.1 'llvm.convert.to.fp16' Intrinsic ... 148

10.7.2 'llvm.convert.from.fp16' Intrinsic .. 149

10.8 Debugger intrinsics ... 150

10.9 Exception Handling intrinsics ... 150

10.10 Trampoline Intrinsics ... 150

10.10.1 'llvm.init.trampoline' Intrinsic ... 150

10.10.2 'llvm.adjust.trampoline' Intrinsic .. 151

10.11 Atomic intrinsics ... 152

10.11.1 llvm.memory_barrier ... 152

10.11.2 llvm.atomic.cmp.swap ... 154

10.11.3 llvm.atomic.swap ... 155

10.11.4 llvm.atomic.load.add ... 156

10.11.5 llvm.atomic.load.sub ... 157

10.11.6 llvm.atomic.load.and ... 159

10.11.7 llvm.atomic.load.nand ... 159

10.11.8 llvm.atomic.load.or ... 159

10.11.9 llvm.atomic.load.xor ... 159

10.11.10 llvm.atomic.load.max ... 160

10.11.11 llvm.atomic.load.min ... 160

10.11.12 llvm.atomic.load.umax ... 160

10.11.13 llvm.atomic.load.umin ... 160

10.12 Memory Use Markers ... 162

10.12.1 llvm.lifetime.start ... 162

Table of Contents

8

10.12.2 llvm.lifetime.end ... 162

10.12.3 llvm.invariant.start ... 163

10.12.4 llvm.invariant.end ... 164

10.13 General intrinsics .. 164

10.13.1 'llvm.var.annotation' Intrinsic ... 164

10.13.2 'llvm.annotation.*' Intrinsic ... 165

10.13.3 'llvm.trap' Intrinsic .. 165

10.13.4 'llvm.stackprotector' Intrinsic ... 166

10.13.5 'llvm.objectsize' Intrinsic ... 167

Written by Chris Lattner and Vikram Adve

Table of Contents

9

mailto:sabre@nondot.org
mailto:vadve@cs.uiuc.edu

Chapter 0.

10

Abstract

This document is a reference manual for the LLVM assembly language. LLVM is a Static Single

Assignment (SSA) based representation that provides type safety, low-level operations, flexibility,

and the capability of representing 'all' high-level languages cleanly. It is the common code

representation used throughout all phases of the LLVM compilation strategy.

Introduction

The LLVM code representation is designed to be used in three different forms: as an in-memory

compiler IR, as an on-disk bitcode representation (suitable for fast loading by a Just-In-Time

compiler), and as a human readable assembly language representation. This allows LLVM to

provide a powerful intermediate representation for efficient compiler transformations and

analysis, while providing a natural means to debug and visualize the transformations. The three

different forms of LLVM are all equivalent. This document describes the human readable

representation and notation.

The LLVM representation aims to be light-weight and low-level while being expressive, typed,

and extensible at the same time. It aims to be a "universal IR" of sorts, by being at a low enough

level that high-level ideas may be cleanly mapped to it (similar to how microprocessors are

"universal IR's", allowing many source languages to be mapped to them). By providing type

information, LLVM can be used as the target of optimizations: for example, through pointer

analysis, it can be proven that a C automatic variable is never accessed outside of the current

function, allowing it to be promoted to a simple SSA value instead of a memory location.

Well-Formedness

It is important to note that this document describes 'well formed' LLVM assembly language.

There is a difference between what the parser accepts and what is considered 'well formed'. For

example, the following instruction is syntactically okay, but not well formed:

%x = add i32 1, %x

because the definition of %x does not dominate all of its uses. The LLVM infrastructure provides a

verification pass that may be used to verify that an LLVM module is well formed. This pass is

11

automatically run by the parser after parsing input assembly and by the optimizer before it

outputs bitcode. The violations pointed out by the verifier pass indicate bugs in transformation

passes or input to the parser.

Chapter II. Introduction

12

Identifiers

LLVM identifiers come in two basic types: global and local. Global identifiers (functions, global

variables) begin with the '@' character. Local identifiers (register names, types) begin with the

'%' character. Additionally, there are three different formats for identifiers, for different

purposes:

1. Named values are represented as a string of characters with their prefix. For example,

%foo, @DivisionByZero, %a.really.long.identifier. The actual regular expression

used is '[%@][a-zA-Z$._][a-zA-Z$._0-9]*'. Identifiers which require other characters in

their names can be surrounded with quotes. Special characters may be escaped using

"\xx" where xx is the ASCII code for the character in hexadecimal. In this way, any

character can be used in a name value, even quotes themselves.

2. Unnamed values are represented as an unsigned numeric value with their prefix. For

example, %12, @2, %44.

3. Constants, which are described in a section about constants, below.

LLVM requires that values start with a prefix for two reasons: Compilers don't need to worry

about name clashes with reserved words, and the set of reserved words may be expanded in the

future without penalty. Additionally, unnamed identifiers allow a compiler to quickly come up

with a temporary variable without having to avoid symbol table conflicts.

Reserved words in LLVM are very similar to reserved words in other languages. There are

keywords for different opcodes ('add', 'bitcast', 'ret', etc...), for primitive type names ('void',

'i32', etc...), and others. These reserved words cannot conflict with variable names, because none

of them start with a prefix character ('%' or '@').

Here is an example of LLVM code to multiply the integer variable '%X' by 8:

The easy way:

%result = mul i32 %X, 8

After strength reduction:

%result = shl i32 %X, i8 3

13

And the hard way:

%0 = add i32 %X, %X ; yields {i32}:%0
%1 = add i32 %0, %0 ; yields {i32}:%1
%result = add i32 %1, %1

This last way of multiplying %X by 8 illustrates several important lexical features of LLVM:

1. Comments are delimited with a ';' and go until the end of line.

2. Unnamed temporaries are created when the result of a computation is not assigned to a

named value.

3. Unnamed temporaries are numbered sequentially

It also shows a convention that we follow in this document. When demonstrating instructions, we

will follow an instruction with a comment that defines the type and name of value produced.

Comments are shown in italic text.

Chapter III. Identifiers

14

High Level Structure

Module Structure

LLVM programs are composed of "Module"s, each of which is a translation unit of the input

programs. Each module consists of functions, global variables, and symbol table entries. Modules

may be combined together with the LLVM linker, which merges function (and global variable)

definitions, resolves forward declarations, and merges symbol table entries. Here is an example of

the "hello world" module:

; Declare the string constant as a global constant.
@.LC0 = internal constant [13 x i8] c"hello world\0A\00" ; [13 x i8]*

; External declaration of the puts function
declare i32 @puts(i8*) ; i32 (i8*)*

; Definition of main function
define i32 @main() { ; i32()*

; Convert [13 x i8]* to i8 *...
%cast210 = getelementptr [13 x i8]* @.LC0, i64 0, i64 0 ; i8*

; Call puts function to write out the string to stdout.
call i32 @puts(i8* %cast210) ; i32
ret i32 0

}

; Named metadata
!1 = metadata !{i32 41}
!foo = !{!1, null}

This example is made up of a global variable named ".LC0", an external declaration of the "puts"

function, a function definition for "main" and named metadata "foo".

In general, a module is made up of a list of global values, where both functions and global

variables are global values. Global values are represented by a pointer to a memory location (in

this case, a pointer to an array of char, and a pointer to a function), and have one of the following

linkage types.

Module Structure

15

Linkage Types

All Global Variables and Functions have one of the following types of linkage:

private

Global values with "private" linkage are only directly accessible by objects in the current

module. In particular, linking code into a module with an private global value may cause the

private to be renamed as necessary to avoid collisions. Because the symbol is private to the

module, all references can be updated. This doesn't show up in any symbol table in the object

file.

linker_private

Similar to private, but the symbol is passed through the assembler and evaluated by the

linker. Unlike normal strong symbols, they are removed by the linker from the final linked

image (executable or dynamic library).

linker_private_weak

Similar to "linker_private", but the symbol is weak. Note that linker_private_weak

symbols are subject to coalescing by the linker. The symbols are removed by the linker from

the final linked image (executable or dynamic library).

linker_private_weak_def_auto

Similar to "linker_private_weak", but it's known that the address of the object is not taken.

For instance, functions that had an inline definition, but the compiler decided not to inline it.

Note, unlike linker_private and linker_private_weak, linker_private_weak_def_auto

may have only default visibility. The symbols are removed by the linker from the final

linked image (executable or dynamic library).

internal

Similar to private, but the value shows as a local symbol (STB_LOCAL in the case of ELF) in the

object file. This corresponds to the notion of the 'static' keyword in C.

available_externally

Globals with "available_externally" linkage are never emitted into the object file

corresponding to the LLVM module. They exist to allow inlining and other optimizations to

take place given knowledge of the definition of the global, which is known to be somewhere

outside the module. Globals with available_externally linkage are allowed to be discarded

Chapter IV. High Level Structure

16

at will, and are otherwise the same as linkonce_odr. This linkage type is only allowed on

definitions, not declarations.

linkonce

Globals with "linkonce" linkage are merged with other globals of the same name when

linkage occurs. This can be used to implement some forms of inline functions, templates, or

other code which must be generated in each translation unit that uses it, but where the body

may be overridden with a more definitive definition later. Unreferenced linkonce globals

are allowed to be discarded. Note that linkonce linkage does not actually allow the optimizer

to inline the body of this function into callers because it doesn't know if this definition of the

function is the definitive definition within the program or whether it will be overridden by a

stronger definition. To enable inlining and other optimizations, use "linkonce_odr" linkage.

weak

"weak" linkage has the same merging semantics as linkonce linkage, except that

unreferenced globals with weak linkage may not be discarded. This is used for globals that

are declared "weak" in C source code.

common

"common" linkage is most similar to "weak" linkage, but they are used for tentative definitions

in C, such as "int X;" at global scope. Symbols with "common" linkage are merged in the same

way as weak symbols, and they may not be deleted if unreferenced. common symbols may not

have an explicit section, must have a zero initializer, and may not be marked 'constant'.

Functions and aliases may not have common linkage.

appending

"appending" linkage may only be applied to global variables of pointer to array type. When

two global variables with appending linkage are linked together, the two global arrays are

appended together. This is the LLVM, typesafe, equivalent of having the system linker

append together "sections" with identical names when .o files are linked.

extern_weak

The semantics of this linkage follow the ELF object file model: the symbol is weak until

linked, if not linked, the symbol becomes null instead of being an undefined reference.

Linkage Types

17

linkonce_odr

weak_odr

Some languages allow differing globals to be merged, such as two functions with different

semantics. Other languages, such as C++, ensure that only equivalent globals are ever merged

(the "one definition rule" — "ODR"). Such languages can use the linkonce_odr and weak_odr

linkage types to indicate that the global will only be merged with equivalent globals. These

linkage types are otherwise the same as their non-odr versions.

externally visible:
If none of the above identifiers are used, the global is externally visible, meaning that it

participates in linkage and can be used to resolve external symbol references.

The next two types of linkage are targeted for Microsoft Windows platform only. They are

designed to support importing (exporting) symbols from (to) DLLs (Dynamic Link Libraries).

dllimport

"dllimport" linkage causes the compiler to reference a function or variable via a global

pointer to a pointer that is set up by the DLL exporting the symbol. On Microsoft Windows

targets, the pointer name is formed by combining __imp_ and the function or variable name.

dllexport

"dllexport" linkage causes the compiler to provide a global pointer to a pointer in a DLL, so

that it can be referenced with the dllimport attribute. On Microsoft Windows targets, the

pointer name is formed by combining __imp_ and the function or variable name.

For example, since the ".LC0" variable is defined to be internal, if another module defined a

".LC0" variable and was linked with this one, one of the two would be renamed, preventing a

collision. Since "main" and "puts" are external (i.e., lacking any linkage declarations), they are

accessible outside of the current module.

It is illegal for a function declaration to have any linkage type other than "externally visible",

dllimport or extern_weak.

Aliases can have only external, internal, weak or weak_odr linkages.

Chapter IV. High Level Structure

18

Calling Conventions

LLVM functions, calls and invokes can all have an optional calling convention specified for the

call. The calling convention of any pair of dynamic caller/callee must match, or the behavior of

the program is undefined. The following calling conventions are supported by LLVM, and more

may be added in the future:

"ccc" - The C calling convention:
This calling convention (the default if no other calling convention is specified) matches the

target C calling conventions. This calling convention supports varargs function calls and

tolerates some mismatch in the declared prototype and implemented declaration of the

function (as does normal C).

"fastcc" - The fast calling convention:
This calling convention attempts to make calls as fast as possible (e.g. by passing things in

registers). This calling convention allows the target to use whatever tricks it wants to

produce fast code for the target, without having to conform to an externally specified ABI

(Application Binary Interface). Tail calls can only be optimized when this or the GHC

convention is used. This calling convention does not support varargs and requires the

prototype of all callees to exactly match the prototype of the function definition.

"coldcc" - The cold calling convention:
This calling convention attempts to make code in the caller as efficient as possible under the

assumption that the call is not commonly executed. As such, these calls often preserve all

registers so that the call does not break any live ranges in the caller side. This calling

convention does not support varargs and requires the prototype of all callees to exactly

match the prototype of the function definition.

"cc 10" - GHC convention:
This calling convention has been implemented specifically for use by the Glasgow Haskell

Compiler (GHC). It passes everything in registers, going to extremes to achieve this by

disabling callee save registers. This calling convention should not be used lightly but only for

specific situations such as an alternative to the register pinning performance technique often

used when implementing functional programming languages.At the moment only X86

supports this convention and it has the following limitations:

Calling Conventions

19

http://www.llvm.org/docs/CodeGenerator.html#tailcallopt
http://www.llvm.org/docs/CodeGenerator.html#tailcallopt
http://www.haskell.org/ghc
http://www.haskell.org/ghc

• On X86-32 only supports up to 4 bit type parameters. No floating point types are

supported.

• On X86-64 only supports up to 10 bit type parameters and 6 floating point

parameters.

This calling convention supports tail call optimization but requires both the caller and callee

are using it.

"cc <n>" - Numbered convention:
Any calling convention may be specified by number, allowing target-specific calling

conventions to be used. Target specific calling conventions start at 64.

More calling conventions can be added/defined on an as-needed basis, to support Pascal

conventions or any other well-known target-independent convention.

Visibility Styles

All Global Variables and Functions have one of the following visibility styles:

"default" - Default style:
On targets that use the ELF object file format, default visibility means that the declaration is

visible to other modules and, in shared libraries, means that the declared entity may be

overridden. On Darwin, default visibility means that the declaration is visible to other

modules. Default visibility corresponds to "external linkage" in the language.

"hidden" - Hidden style:
Two declarations of an object with hidden visibility refer to the same object if they are in the

same shared object. Usually, hidden visibility indicates that the symbol will not be placed

into the dynamic symbol table, so no other module (executable or shared library) can

reference it directly.

"protected" - Protected style:
On ELF, protected visibility indicates that the symbol will be placed in the dynamic symbol

table, but that references within the defining module will bind to the local symbol. That is,

the symbol cannot be overridden by another module.

Chapter IV. High Level Structure

20

http://www.llvm.org/docs/CodeGenerator.html#tailcallopt

Named Types

LLVM IR allows you to specify name aliases for certain types. This can make it easier to read the

IR and make the IR more condensed (particularly when recursive types are involved). An example

of a name specification is:

%mytype = type { %mytype*, i32 }

You may give a name to any type except "void". Type name aliases may be used anywhere a type

is expected with the syntax "%mytype".

Note that type names are aliases for the structural type that they indicate, and that you can

therefore specify multiple names for the same type. This often leads to confusing behavior when

dumping out a .ll file. Since LLVM IR uses structural typing, the name is not part of the type.

When printing out LLVM IR, the printer will pick one name to render all types of a particular

shape. This means that if you have code where two different source types end up having the same

LLVM type, that the dumper will sometimes print the "wrong" or unexpected type. This is an

important design point and isn't going to change.

Global Variables

Global variables define regions of memory allocated at compilation time instead of run-time.

Global variables may optionally be initialized, may have an explicit section to be placed in, and

may have an optional explicit alignment specified. A variable may be defined as "thread_local",

which means that it will not be shared by threads (each thread will have a separated copy of the

variable). A variable may be defined as a global "constant," which indicates that the contents of

the variable will never be modified (enabling better optimization, allowing the global data to be

placed in the read-only section of an executable, etc). Note that variables that need runtime

initialization cannot be marked "constant" as there is a store to the variable.

LLVM explicitly allows declarations of global variables to be marked constant, even if the final

definition of the global is not. This capability can be used to enable slightly better optimization of

the program, but requires the language definition to guarantee that optimizations based on the

'constantness' are valid for the translation units that do not include the definition.

As SSA values, global variables define pointer values that are in scope (i.e. they dominate) all basic

blocks in the program. Global variables always define a pointer to their "content" type because

Named Types

21

they describe a region of memory, and all memory objects in LLVM are accessed through

pointers.

Global variables can be marked with unnamed_addr which indicates that the address is not

significant, only the content. Constants marked like this can be merged with other constants if

they have the same initializer. Note that a constant with significant address can be merged with a

unnamed_addr constant, the result being a constant whose address is significant.

A global variable may be declared to reside in a target-specific numbered address space. For

targets that support them, address spaces may affect how optimizations are performed and/or

what target instructions are used to access the variable. The default address space is zero. The

address space qualifier must precede any other attributes.

LLVM allows an explicit section to be specified for globals. If the target supports it, it will emit

globals to the section specified.

An explicit alignment may be specified for a global, which must be a power of 2. If not present, or

if the alignment is set to zero, the alignment of the global is set by the target to whatever it feels

convenient. If an explicit alignment is specified, the global is forced to have exactly that

alignment. Targets and optimizers are not allowed to over-align the global if the global has an

assigned section. In this case, the extra alignment could be observable: for example, code could

assume that the globals are densely packed in their section and try to iterate over them as an

array, alignment padding would break this iteration.

For example, the following defines a global in a numbered address space with an initializer,

section, and alignment:

@G = addrspace(5) constant float 1.0, section "foo", align 4

Functions

LLVM function definitions consist of the "define" keyword, an optional linkage type, an optional

visibility style, an optional calling convention, an optional unnamed_addr attribute, a return type,

an optional parameter attribute for the return type, a function name, a (possibly empty)

argument list (each with optional parameter attributes), optional function attributes, an optional

section, an optional alignment, an optional garbage collector name, an opening curly brace, a list

of basic blocks, and a closing curly brace.

Chapter IV. High Level Structure

22

LLVM function declarations consist of the "declare" keyword, an optional linkage type, an

optional visibility style, an optional calling convention, an optional unnamed_addr attribute, a

return type, an optional parameter attribute for the return type, a function name, a possibly

empty list of arguments, an optional alignment, and an optional garbage collector name.

A function definition contains a list of basic blocks, forming the CFG (Control Flow Graph) for the

function. Each basic block may optionally start with a label (giving the basic block a symbol table

entry), contains a list of instructions, and ends with a terminator instruction (such as a branch or

function return).

The first basic block in a function is special in two ways: it is immediately executed on entrance to

the function, and it is not allowed to have predecessor basic blocks (i.e. there can not be any

branches to the entry block of a function). Because the block can have no predecessors, it also

cannot have any PHI nodes.

LLVM allows an explicit section to be specified for functions. If the target supports it, it will emit

functions to the section specified.

An explicit alignment may be specified for a function. If not present, or if the alignment is set to

zero, the alignment of the function is set by the target to whatever it feels convenient. If an

explicit alignment is specified, the function is forced to have at least that much alignment. All

alignments must be a power of 2.

If the unnamed_addr attribute is given, the address is know to not be significant and two identical

functions can be merged

.

Syntax:

define [linkage] [visibility]
[cconv] [ret attrs]
<ResultType> @<FunctionName> ([argument list])
[fn Attrs] [section "name"] [align N]
[gc] { ... }

Functions

23

Aliases

Aliases act as "second name" for the aliasee value (which can be either function, global variable,

another alias or bitcast of global value). Aliases may have an optional linkage type, and an

optional visibility style.

Syntax:

@<Name> = alias [Linkage] [Visibility] <AliaseeTy> @<Aliasee>

Named Metadata

Named metadata is a collection of metadata. Metadata nodes (but not metadata strings) are the

only valid operands for a named metadata.

Syntax:

; Some unnamed metadata nodes, which are referenced by the named metadata.
!0 = metadata !{metadata !"zero"}
!1 = metadata !{metadata !"one"}
!2 = metadata !{metadata !"two"}
; A named metadata.
!name = !{!0, !1, !2}

Parameter Attributes

The return type and each parameter of a function type may have a set of parameter attributes

associated with them. Parameter attributes are used to communicate additional information

about the result or parameters of a function. Parameter attributes are considered to be part of the

function, not of the function type, so functions with different parameter attributes can have the

same function type.

Parameter attributes are simple keywords that follow the type specified. If multiple parameter

attributes are needed, they are space separated. For example:

declare i32 @printf(i8* noalias nocapture, ...)
declare i32 @atoi(i8 zeroext)
declare signext i8 @returns_signed_char()

Chapter IV. High Level Structure

24

Note that any attributes for the function result (nounwind, readonly) come immediately after the

argument list.

Currently, only the following parameter attributes are defined:

zeroext

This indicates to the code generator that the parameter or return value should be zero-

extended to the extent required by the target's ABI (which is usually 32-bits, but is 8-bits for

a i1 on x86-64) by the caller (for a parameter) or the callee (for a return value).

signext

This indicates to the code generator that the parameter or return value should be sign-

extended to the extent required by the target's ABI (which is usually 32-bits) by the caller

(for a parameter) or the callee (for a return value).

inreg

This indicates that this parameter or return value should be treated in a special target-

dependent fashion during while emitting code for a function call or return (usually, by

putting it in a register as opposed to memory, though some targets use it to distinguish

between two different kinds of registers). Use of this attribute is target-specific.

byval

This indicates that the pointer parameter should really be passed by value to the function.

The attribute implies that a hidden copy of the pointee is made between the caller and the

callee, so the callee is unable to modify the value in the callee. This attribute is only valid on

LLVM pointer arguments. It is generally used to pass structs and arrays by value, but is also

valid on pointers to scalars. The copy is considered to belong to the caller not the callee (for

example, readonly functions should not write to byval parameters). This is not a valid

attribute for return values.

The byval attribute also supports specifying an alignment with the align attribute. It

indicates the alignment of the stack slot to form and the known alignment of the pointer

specified to the call site. If the alignment is not specified, then the code generator makes a

target-specific assumption.

Parameter Attributes

25

sret

This indicates that the pointer parameter specifies the address of a structure that is the

return value of the function in the source program. This pointer must be guaranteed by the

caller to be valid: loads and stores to the structure may be assumed by the callee to not to

trap. This may only be applied to the first parameter. This is not a valid attribute for return

values.

noalias

This indicates that pointer values based on the argument or return value do not alias pointer

values which are not based on it, ignoring certain "irrelevant" dependencies. For a call to the

parent function, dependencies between memory references from before or after the call and

from those during the call are "irrelevant" to the noalias keyword for the arguments and

return value used in that call. The caller shares the responsibility with the callee for ensuring

that these requirements are met. For further details, please see the discussion of the NoAlias

response in alias analysis.

Note that this definition of noalias is intentionally similar to the definition of restrict in

C99 for function arguments, though it is slightly weaker.

For function return values, C99's restrict is not meaningful, while LLVM's noalias is.

nocapture

This indicates that the callee does not make any copies of the pointer that outlive the callee

itself. This is not a valid attribute for return values.

nest

This indicates that the pointer parameter can be excised using the trampoline intrinsics. This

is not a valid attribute for return values.

Garbage Collector Names

Each function may specify a garbage collector name, which is simply a string:

define void @f() gc "name" { ... }

The compiler declares the supported values of name. Specifying a collector which will cause the

compiler to alter its output in order to support the named garbage collection algorithm.

Chapter IV. High Level Structure

26

http://www.llvm.org/docs/AliasAnalysis.html#MustMayNo

Function Attributes

Function attributes are set to communicate additional information about a function. Function

attributes are considered to be part of the function, not of the function type, so functions with

different parameter attributes can have the same function type.

Function attributes are simple keywords that follow the type specified. If multiple attributes are

needed, they are space separated. For example:

define void @f() noinline { ... }
define void @f() alwaysinline { ... }
define void @f() alwaysinline optsize { ... }
define void @f() optsize { ... }

alignstack(<n>)

This attribute indicates that, when emitting the prologue and epilogue, the backend should

forcibly align the stack pointer. Specify the desired alignment, which must be a power of

two, in parentheses.

alwaysinline

This attribute indicates that the inliner should attempt to inline this function into callers

whenever possible, ignoring any active inlining size threshold for this caller.

hotpatch

This attribute indicates that the function should be 'hotpatchable', meaning the function can

be patched and/or hooked even while it is loaded into memory. On x86, the function

prologue will be preceded by six bytes of padding and will begin with a two-byte instruction.

Most of the functions in the Windows system DLLs in Windows XP SP2 or higher were

compiled in this fashion.

nonlazybind

This attribute suppresses lazy symbol binding for the function. This may make calls to the

function faster, at the cost of extra program startup time if the function is not called during

program startup.

Function Attributes

27

inlinehint

This attribute indicates that the source code contained a hint that inlining this function is

desirable (such as the "inline" keyword in C/C++). It is just a hint; it imposes no requirements

on the inliner.

naked

This attribute disables prologue / epilogue emission for the function. This can have very

system-specific consequences.

noimplicitfloat

This attributes disables implicit floating point instructions.

noinline

This attribute indicates that the inliner should never inline this function in any situation.

This attribute may not be used together with the alwaysinline attribute.

noredzone

This attribute indicates that the code generator should not use a red zone, even if the target-

specific ABI normally permits it.

noreturn

This function attribute indicates that the function never returns normally. This produces

undefined behavior at runtime if the function ever does dynamically return.

nounwind

This function attribute indicates that the function never returns with an unwind or

exceptional control flow. If the function does unwind, its runtime behavior is undefined.

optsize

This attribute suggests that optimization passes and code generator passes make choices that

keep the code size of this function low, and otherwise do optimizations specifically to reduce

code size.

readnone

This attribute indicates that the function computes its result (or decides to unwind an

exception) based strictly on its arguments, without dereferencing any pointer arguments or

otherwise accessing any mutable state (e.g. memory, control registers, etc) visible to caller

functions. It does not write through any pointer arguments (including byval arguments) and

Chapter IV. High Level Structure

28

never changes any state visible to callers. This means that it cannot unwind exceptions by

calling the C++ exception throwing methods, but could use the unwind instruction.

readonly

This attribute indicates that the function does not write through any pointer arguments

(including byval arguments) or otherwise modify any state (e.g. memory, control registers,

etc) visible to caller functions. It may dereference pointer arguments and read state that may

be set in the caller. A readonly function always returns the same value (or unwinds an

exception identically) when called with the same set of arguments and global state. It cannot

unwind an exception by calling the C++ exception throwing methods, but may use the unwind

instruction.

ssp

This attribute indicates that the function should emit a stack smashing protector. It is in the

form of a "canary"—a random value placed on the stack before the local variables that's

checked upon return from the function to see if it has been overwritten. A heuristic is used

to determine if a function needs stack protectors or not.

If a function that has an ssp attribute is inlined into a function that doesn't have an ssp

attribute, then the resulting function will have an ssp attribute.

sspreq

This attribute indicates that the function should always emit a stack smashing protector. This

overrides the ssp function attribute.

If a function that has an sspreq attribute is inlined into a function that doesn't have an

sspreq attribute or which has an ssp attribute, then the resulting function will have an

sspreq attribute.

uwtable

This attribute indicates that the ABI being targeted requires that an unwind table entry be

produce for this function even if we can show that no exceptions passes by it. This is

normally the case for the ELF x86-64 abi, but it can be disabled for some compilation units.

Function Attributes

29

returns_twice

This attribute indicates that this function can return twice. The C setjmp is an example of

such a function. The compiler disables some optimizations (like tail calls) in the caller of

these functions.

Module-Level Inline Assembly

Modules may contain "module-level inline asm" blocks, which corresponds to the GCC "file scope

inline asm" blocks. These blocks are internally concatenated by LLVM and treated as a single unit,

but may be separated in the .ll file if desired. The syntax is very simple:

module asm "inline asm code goes here"
module asm "more can go here"

The strings can contain any character by escaping non-printable characters. The escape sequence

used is simply "\xx" where "xx" is the two digit hex code for the number.

The inline asm code is simply printed to the machine code .s file when assembly code is

generated.

Data Layout

A module may specify a target specific data layout string that specifies how data is to be laid out

in memory. The syntax for the data layout is simply:

target datalayout = "layout specification"

The layout specification consists of a list of specifications separated by the minus sign character ('-

'). Each specification starts with a letter and may include other information after the letter to

define some aspect of the data layout. The specifications accepted are as follows:

E

Specifies that the target lays out data in big-endian form. That is, the bits with the most

significance have the lowest address location.

e

Specifies that the target lays out data in little-endian form. That is, the bits with the least

significance have the lowest address location.

Chapter IV. High Level Structure

30

p:size:abi:pref

This specifies the size of a pointer and its abi and preferred alignments. All sizes are in bits.

Specifying the pref alignment is optional. If omitted, the preceding : should be omitted too.

isize:abi:pref

This specifies the alignment for an integer type of a given bit size. The value of size must be in

the range [1,2^23).

vsize:abi:pref

This specifies the alignment for a vector type of a given bit size.

fsize:abi:pref

This specifies the alignment for a floating point type of a given bit size. Only values of size

that are supported by the target will work. 32 (float) and 64 (double) are supported on all

targets; 80 or 128 (different flavors of long double) are also supported on some targets.

asize:abi:pref

This specifies the alignment for an aggregate type of a given bit size.

ssize:abi:pref

This specifies the alignment for a stack object of a given bit size.

nsize1:size2:size3...

This specifies a set of native integer widths for the target CPU in bits. For example, it might

contain "n32" for 32-bit PowerPC, "n32:64" for PowerPC 64, or "n8:16:32:64" for X86-64.

Elements of this set are considered to support most general arithmetic operations efficiently.

When constructing the data layout for a given target, LLVM starts with a default set of

specifications which are then (possibly) overridden by the specifications in the datalayout

keyword. The default specifications are given in this list:

• E - big endian

• p:64:64:64 - 64-bit pointers with 64-bit alignment

• i1:8:8 - i1 is 8-bit (byte) aligned

• i8:8:8 - i8 is 8-bit (byte) aligned

• i16:16:16 - i16 is 16-bit aligned

• i32:32:32 - i32 is 32-bit aligned

Data Layout

31

• i64:32:64 - i64 has ABI alignment of 32-bits but preferred alignment of 64-bits

• f32:32:32 - float is 32-bit aligned

• f64:64:64 - double is 64-bit aligned

• v64:64:64 - 64-bit vector is 64-bit aligned

• v128:128:128 - 128-bit vector is 128-bit aligned

• a0:0:1 - aggregates are 8-bit aligned

• s0:64:64 - stack objects are 64-bit aligned

When LLVM is determining the alignment for a given type, it uses the following rules:

1. If the type sought is an exact match for one of the specifications, that specification is

used.

2. If no match is found, and the type sought is an integer type, then the smallest integer

type that is larger than the bitwidth of the sought type is used. If none of the

specifications are larger than the bitwidth then the the largest integer type is used. For

example, given the default specifications above, the i7 type will use the alignment of i8

(next largest) while both i65 and i256 will use the alignment of i64 (largest specified).

3. If no match is found, and the type sought is a vector type, then the largest vector type

that is smaller than the sought vector type will be used as a fall back. This happens

because <128 x double> can be implemented in terms of 64 <2 x double>, for example.

Pointer Aliasing Rules

Any memory access must be done through a pointer value associated with an address range of the

memory access, otherwise the behavior is undefined. Pointer values are associated with address

ranges according to the following rules:

• A pointer value is associated with the addresses associated with any value it is based on.

• An address of a global variable is associated with the address range of the variable's

storage.

• The result value of an allocation instruction is associated with the address range of the

allocated storage.

• A null pointer in the default address-space is associated with no address.

• An integer constant other than zero or a pointer value returned from a function not

defined within LLVM may be associated with address ranges allocated through

Chapter IV. High Level Structure

32

mechanisms other than those provided by LLVM. Such ranges shall not overlap with any

ranges of addresses allocated by mechanisms provided by LLVM.

A pointer value is based on another pointer value according to the following rules:

• A pointer value formed from a getelementptr operation is based on the first operand of

the getelementptr.

• The result value of a bitcast is based on the operand of the bitcast.

• A pointer value formed by an inttoptr is based on all pointer values that contribute

(directly or indirectly) to the computation of the pointer's value.

• The "based on" relationship is transitive.

Note that this definition of "based" is intentionally similar to the definition of "based" in C99,

though it is slightly weaker.

LLVM IR does not associate types with memory. The result type of a load merely indicates the

size and alignment of the memory from which to load, as well as the interpretation of the value.

The first operand type of a store similarly only indicates the size and alignment of the store.

Consequently, type-based alias analysis, aka TBAA, aka -fstrict-aliasing, is not applicable to

general unadorned LLVM IR. Metadata may be used to encode additional information which

specialized optimization passes may use to implement type-based alias analysis.

Volatile Memory Accesses

Certain memory accesses, such as loads, stores, and llvm.memcpys may be marked volatile. The

optimizers must not change the number of volatile operations or change their order of execution

relative to other volatile operations. The optimizers may change the order of volatile operations

relative to non-volatile operations. This is not Java's "volatile" and has no cross-thread

synchronization behavior.

Memory Model for Concurrent Operations

The LLVM IR does not define any way to start parallel threads of execution or to register signal

handlers. Nonetheless, there are platform-specific ways to create them, and we define LLVM IR's

behavior in their presence. This model is inspired by the C++0x memory model.

Volatile Memory Accesses

33

For a more informal introduction to this model, see the LLVM Atomic Instructions and

Concurrency Guide.

We define a happens-before partial order as the least partial order that

• Is a superset of single-thread program order, and

• When a synchronizes-with b, includes an edge from a to b. Synchronizes-with pairs are

introduced by platform-specific techniques, like pthread locks, thread creation, thread

joining, etc., and by atomic instructions. (See also Atomic Memory Ordering Constraints).

Note that program order does not introduce happens-before edges between a thread and signals

executing inside that thread.

Every (defined) read operation (load instructions, memcpy, atomic loads/read-modify-writes,

etc.) R reads a series of bytes written by (defined) write operations (store instructions, atomic

stores/read-modify-writes, memcpy, etc.). For the purposes of this section, initialized globals are

considered to have a write of the initializer which is atomic and happens before any other read or

write of the memory in question. For each byte of a read R, Rbyte may see any write to the same

byte, except:

• If write1 happens before write2, and write2 happens before Rbyte, then Rbyte does not see

write1.

• If Rbyte happens before write3, then Rbyte does not see write3.

Given that definition, Rbyte is defined as follows:

• If R is volatile, the result is target-dependent. (Volatile is supposed to give guarantees

which can support sig_atomic_t in C/C++, and may be used for accesses to addresses

which do not behave like normal memory. It does not generally provide cross-thread

synchronization.)

• Otherwise, if there is no write to the same byte that happens before Rbyte, Rbyte returns

undef for that byte.

• Otherwise, if Rbyte may see exactly one write, Rbyte returns the value written by that write.

• Otherwise, if R is atomic, and all the writes Rbyte may see are atomic, it chooses one of the

values written. See the Atomic Memory Ordering Constraints section for additional

constraints on how the choice is made.

• Otherwise Rbyte returns undef.

Chapter IV. High Level Structure

34

http://www.llvm.org/docs/Atomics.html
http://www.llvm.org/docs/Atomics.html

R returns the value composed of the series of bytes it read. This implies that some bytes within

the value may be undef without the entire value being undef. Note that this only defines the

semantics of the operation; it doesn't mean that targets will emit more than one instruction to

read the series of bytes.

Note that in cases where none of the atomic intrinsics are used, this model places only one

restriction on IR transformations on top of what is required for single-threaded execution:

introducing a store to a byte which might not otherwise be stored is not allowed in general.

(Specifically, in the case where another thread might write to and read from an address,

introducing a store can change a load that may see exactly one write into a load that may see

multiple writes.)

Atomic Memory Ordering Constraints

Atomic instructions (cmpxchg, atomicrmw, fence, atomic load, and atomic store) take an

ordering parameter that determines which other atomic instructions on the same address they

synchronize with. These semantics are borrowed from Java and C++0x, but are somewhat more

colloquial. If these descriptions aren't precise enough, check those specs (see spec references in

the atomics guide). fence instructions treat these orderings somewhat differently since they

don't take an address. See that instruction's documentation for details.

For a simpler introduction to the ordering constraints, see the LLVM Atomic Instructions and

Concurrency Guide.

unordered

The set of values that can be read is governed by the happens-before partial order. A value

cannot be read unless some operation wrote it. This is intended to provide a guarantee

strong enough to model Java's non-volatile shared variables. This ordering cannot be

specified for read-modify-write operations; it is not strong enough to make them atomic in

any interesting way.

monotonic

In addition to the guarantees of unordered, there is a single total order for modifications by

monotonic operations on each address. All modification orders must be compatible with the

happens-before order. There is no guarantee that the modification orders can be combined

to a global total order for the whole program (and this often will not be possible). The read in

Atomic Memory Ordering Constraints

35

http://www.llvm.org/docs/Atomic.html#introduction
http://www.llvm.org/docs/Atomics.html
http://www.llvm.org/docs/Atomics.html

an atomic read-modify-write operation (cmpxchg and atomicrmw) reads the value in the

modification order immediately before the value it writes. If one atomic read happens before

another atomic read of the same address, the later read must see the same value or a later

value in the address's modification order. This disallows reordering of monotonic (or

stronger) operations on the same address. If an address is written monotonically by one

thread, and other threads monotonically read that address repeatedly, the other threads

must eventually see the write. This corresponds to the C++0x/C1x memory_order_relaxed.

acquire

In addition to the guarantees of monotonic, a synchronizes-with edge may be formed with a

release operation. This is intended to model C++'s memory_order_acquire.

release

In addition to the guarantees of monotonic, if this operation writes a value which is

subsequently read by an acquire operation, it synchronizes-with that operation. (This isn't a

complete description; see the C++0x definition of a release sequence.) This corresponds to the

C++0x/C1x memory_order_release.

acq_rel (acquire+release)
Acts as both an acquire and release operation on its address. This corresponds to the

C++0x/C1x memory_order_acq_rel.

seq_cst (sequentially consistent)
In addition to the guarantees of acq_rel (acquire for an operation which only reads,

release for an operation which only writes), there is a global total order on all

sequentially-consistent operations on all addresses, which is consistent with the

happens-before partial order and with the modification orders of all the affected

addresses. Each sequentially-consistent read sees the last preceding write to the same

address in this global order. This corresponds to the C++0x/C1x memory_order_seq_cst

and Java volatile.

If an atomic operation is marked singlethread, it only synchronizes with or participates in

modification and seq_cst total orderings with other operations running in the same thread (for

example, in signal handlers).

Chapter IV. High Level Structure

36

Type System

The LLVM type system is one of the most important features of the intermediate representation.

Being typed enables a number of optimizations to be performed on the intermediate

representation directly, without having to do extra analyses on the side before the

transformation. A strong type system makes it easier to read the generated code and enables

novel analyses and transformations that are not feasible to perform on normal three address code

representations.

Type Classifications

The types fall into a few useful classifications:

Classification Types

integer i1, i2, i3, ... i8, ... i16, ... i32, ... i64, ...

floating point float, double, x86_fp80, fp128, ppc_fp128

first class integer, floating point, pointer, vector, structure, array, label, metadata.

primitive label, void, integer, floating point, x86mmx, metadata.

derived array, function, pointer, structure, vector, opaque.

The first class types are perhaps the most important. Values of these types are the only ones

which can be produced by instructions.

Primitive Types

The primitive types are the fundamental building blocks of the LLVM system.

Integer Type

Overview:

The integer type is a very simple type that simply specifies an arbitrary bit width for the integer

type desired. Any bit width from 1 bit to 223-1 (about 8 million) can be specified.

Type Classifications

37

Syntax:

iN

The number of bits the integer will occupy is specified by the N value.

Examples:

i1 a single-bit integer.

i32 a 32-bit integer.

i1942652 a really big integer of over 1 million bits.

Floating Point Types

Type Description

float 32-bit floating point value

double 64-bit floating point value

fp128 128-bit floating point value (112-bit mantissa)

x86_fp80 80-bit floating point value (X87)

ppc_fp128 128-bit floating point value (two 64-bits)

X86mmx Type

Overview:

The x86mmx type represents a value held in an MMX register on an x86 machine. The operations

allowed on it are quite limited: parameters and return values, load and store, and bitcast. User-

specified MMX instructions are represented as intrinsic or asm calls with arguments and/or

results of this type. There are no arrays, vectors or constants of this type.

Syntax:

x86mmx

Chapter V. Type System

38

Void Type

Overview:

The void type does not represent any value and has no size.

Syntax:

void

Label Type

Overview:

The label type represents code labels.

Syntax:

label

Metadata Type

Overview:

The metadata type represents embedded metadata. No derived types may be created from

metadata except for function arguments.

Syntax:

metadata

Derived Types

The real power in LLVM comes from the derived types in the system. This is what allows a

programmer to represent arrays, functions, pointers, and other useful types. Each of these types

contain one or more element types which may be a primitive type, or another derived type. For

example, it is possible to have a two dimensional array, using an array as the element type of

another array.

Derived Types

39

Aggregate Types

Aggregate Types are a subset of derived types that can contain multiple member types. Arrays,

structs, and vectors are aggregate types.

Array Type

Overview:

The array type is a very simple derived type that arranges elements sequentially in memory. The

array type requires a size (number of elements) and an underlying data type.

Syntax:

[<# elements> x <elementtype>]

The number of elements is a constant integer value; elementtype may be any type with a size.

Examples:

[40 x i32] Array of 40 32-bit integer values.

[41 x i32] Array of 41 32-bit integer values.

[4 x i8] Array of 4 8-bit integer values.

Here are some examples of multidimensional arrays:

[3 x [4 x i32]] 3x4 array of 32-bit integer values.

[12 x [10 x float]] 12x10 array of single precision floating point values.

[2 x [3 x [4 x i16]]] 2x3x4 array of 16-bit integer values.

There is no restriction on indexing beyond the end of the array implied by a static type (though

there are restrictions on indexing beyond the bounds of an allocated object in some cases). This

means that single-dimension 'variable sized array' addressing can be implemented in LLVM with

a zero length array type. An implementation of 'pascal style arrays' in LLVM could use the type "{

i32, [0 x float]}", for example.

Chapter V. Type System

40

Function Type

Overview:

The function type can be thought of as a function signature. It consists of a return type and a list

of formal parameter types. The return type of a function type is a first class type or a void type.

Syntax:

<returntype> (<parameter list>)

...where '<parameter list>' is a comma-separated list of type specifiers. Optionally, the

parameter list may include a type ..., which indicates that the function takes a variable number

of arguments. Variable argument functions can access their arguments with the variable

argument handling intrinsic functions. '<returntype>' is any type except label.

Examples:

i32 (i32) function taking an i32, returning an i32

float (i16, i32 *) *
Pointer to a function that takes an i16 and a pointer to i32,

returning float.

i32 (i8*, ...)

A vararg function that takes at least one pointer to i8 (char in

C), which returns an integer. This is the signature for printf in

LLVM.

{i32, i32} (i32)
A function taking an i32, returning a structure containing two

i32 values

Structure Type

Overview:

The structure type is used to represent a collection of data members together in memory. The

elements of a structure may be any type that has a size.

Structures in memory are accessed using 'load' and 'store' by getting a pointer to a field with the

'getelementptr' instruction. Structures in registers are accessed using the 'extractvalue' and

'insertvalue' instructions.

Derived Types

41

Structures may optionally be "packed" structures, which indicate that the alignment of the struct

is one byte, and that there is no padding between the elements. In non-packed structs, padding

between field types is inserted as defined by the TargetData string in the module, which is

required to match what the underlying processor expects.

Structures can either be "literal" or "identified". A literal structure is defined inline with other

types (e.g. {i32, i32}*) whereas identified types are always defined at the top level with a name.

Literal types are uniqued by their contents and can never be recursive or opaque since there is no

way to write one. Identified types can be recursive, can be opaqued, and are never uniqued.

Syntax:

%T1 = type { <type list> } ; Identified normal struct type
%T2 = type <{ <type list> }> ; Identified packed struct type

Examples:

{ i32, i32, i32 } A triple of three i32 values

{ float, i32 (i32) * }

A pair, where the first element is a float and the second

element is a pointer to a function that takes an i32, returning

an i32.

<{ i8, i32 }> A packed struct known to be 5 bytes in size.

Opaque Structure Types

Overview:

Opaque structure types are used to represent named structure types that do not have a body

specified. This corresponds (for example) to the C notion of a forward declared structure.

Syntax:

%X = type opaque
%52 = type opaque

Examples:

opaque An opaque type.

Chapter V. Type System

42

Pointer Type

Overview:

The pointer type is used to specify memory locations. Pointers are commonly used to reference

objects in memory.

Pointer types may have an optional address space attribute defining the numbered address space

where the pointed-to object resides. The default address space is number zero. The semantics of

non-zero address spaces are target-specific.

Note that LLVM does not permit pointers to void (void*) nor does it permit pointers to labels

(label*). Use i8* instead.

Syntax:

<type> *

Examples:

[4 x i32]* A pointer to array of four i32 values.

i32 (i32*) * A pointer to a function that takes an i32*, returning an i32.

i32 addrspace(5)* A pointer to an i32 value that resides in address space #5.

Vector Type

Overview:

A vector type is a simple derived type that represents a vector of elements. Vector types are used

when multiple primitive data are operated in parallel using a single instruction (SIMD). A vector

type requires a size (number of elements) and an underlying primitive data type. Vector types are

considered first class.

Syntax:

< <# elements> x <elementtype> >

Derived Types

43

The number of elements is a constant integer value larger than 0; elementtype may be any

integer or floating point type. Vectors of size zero are not allowed, and pointers are not allowed

as the element type.

Examples:

<4 x i32> Vector of 4 32-bit integer values.

<8 x float> Vector of 8 32-bit floating-point values.

<2 x i64> Vector of 2 64-bit integer values.

Chapter V. Type System

44

Constants

LLVM has several different basic types of constants. This section describes them all and their

syntax.

Simple Constants

Boolean constants
The two strings 'true' and 'false' are both valid constants of the i1 type.

Integer constants
Standard integers (such as '4') are constants of the integer type. Negative numbers may be

used with integer types.

Floating point constants
Floating point constants use standard decimal notation (e.g. 123.421), exponential notation

(e.g. 1.23421e+2), or a more precise hexadecimal notation (see below). The assembler requires

the exact decimal value of a floating-point constant. For example, the assembler accepts 1.25

but rejects 1.3 because 1.3 is a repeating decimal in binary. Floating point constants must

have a floating point type.

Null pointer constants
The identifier 'null' is recognized as a null pointer constant and must be of pointer type.

The one non-intuitive notation for constants is the hexadecimal form of floating point constants.

For example, the form 'double 0x432ff973cafa8000' is equivalent to (but harder to read than)

'double 4.5e+15'. The only time hexadecimal floating point constants are required (and the only

time that they are generated by the disassembler) is when a floating point constant must be

emitted but it cannot be represented as a decimal floating point number in a reasonable number

of digits. For example, NaN's, infinities, and other special values are represented in their IEEE

hexadecimal format so that assembly and disassembly do not cause any bits to change in the

constants.

When using the hexadecimal form, constants of types float and double are represented using the

16-digit form shown above (which matches the IEEE754 representation for double); float values

must, however, be exactly representable as IEE754 single precision. Hexadecimal format is always

Simple Constants

45

used for long double, and there are three forms of long double. The 80-bit format used by x86 is

represented as 0xK followed by 20 hexadecimal digits. The 128-bit format used by PowerPC (two

adjacent doubles) is represented by 0xM followed by 32 hexadecimal digits. The IEEE 128-bit

format is represented by 0xL followed by 32 hexadecimal digits; no currently supported target

uses this format. Long doubles will only work if they match the long double format on your

target. All hexadecimal formats are big-endian (sign bit at the left).

There are no constants of type x86mmx.

Complex Constants

Complex constants are a (potentially recursive) combination of simple constants and smaller

complex constants.

Structure constants
Structure constants are represented with notation similar to structure type definitions (a

comma separated list of elements, surrounded by braces ({})). For example: "{ i32 4,

float 17.0, i32* @G }", where "@G" is declared as "@G = external global i32".

Structure constants must have structure type, and the number and types of elements must

match those specified by the type.

Array constants
Array constants are represented with notation similar to array type definitions (a comma

separated list of elements, surrounded by square brackets ([])). For example: "[i32 42,

i32 11, i32 74]". Array constants must have array type, and the number and types of

elements must match those specified by the type.

Vector constants
Vector constants are represented with notation similar to vector type definitions (a comma

separated list of elements, surrounded by less-than/greater-than's (<>)). For example: "< i32

42, i32 11, i32 74, i32 100 >". Vector constants must have vector type, and the number

and types of elements must match those specified by the type.

Zero initialization
The string 'zeroinitializer' can be used to zero initialize a value to zero of any type,

including scalar and aggregate types. This is often used to avoid having to print large zero

Chapter VI. Constants

46

initializers (e.g. for large arrays) and is always exactly equivalent to using explicit zero

initializers.

Metadata node
A metadata node is a structure-like constant with metadata type. For example: "metadata !{

i32 0, metadata !"test" }". Unlike other constants that are meant to be interpreted as

part of the instruction stream, metadata is a place to attach additional information such as

debug info.

Global Variable and Function Addresses

The addresses of global variables and functions are always implicitly valid (link-time) constants.

These constants are explicitly referenced when the identifier for the global is used and always

have pointer type. For example, the following is a legal LLVM file:

@X = global i32 17
@Y = global i32 42
@Z = global [2 x i32*] [i32* @X, i32* @Y]

Undefined Values

The string 'undef' can be used anywhere a constant is expected, and indicates that the user of the

value may receive an unspecified bit-pattern. Undefined values may be of any type (other than

'label' or 'void') and be used anywhere a constant is permitted.

Undefined values are useful because they indicate to the compiler that the program is well

defined no matter what value is used. This gives the compiler more freedom to optimize. Here are

some examples of (potentially surprising) transformations that are valid (in pseudo IR):

%A = add %X, undef
%B = sub %X, undef
%C = xor %X, undef

Safe:
%A = undef
%B = undef
%C = undef

This is safe because all of the output bits are affected by the undef bits. Any output bit can have a

zero or one depending on the input bits.

Global Variable and Function Addresses

47

%A = or %X, undef
%B = and %X, undef

Safe:
%A = -1
%B = 0

Unsafe:
%A = undef
%B = undef

These logical operations have bits that are not always affected by the input. For example, if %X has

a zero bit, then the output of the 'and' operation will always be a zero for that bit, no matter what

the corresponding bit from the 'undef' is. As such, it is unsafe to optimize or assume that the

result of the 'and' is 'undef'. However, it is safe to assume that all bits of the 'undef' could be 0,

and optimize the 'and' to 0. Likewise, it is safe to assume that all the bits of the 'undef' operand to

the 'or' could be set, allowing the 'or' to be folded to -1.

%A = select undef, %X, %Y
%B = select undef, 42, %Y
%C = select %X, %Y, undef

Safe:
%A = %X (or %Y)
%B = 42 (or %Y)
%C = %Y

Unsafe:
%A = undef
%B = undef
%C = undef

This set of examples shows that undefined 'select' (and conditional branch) conditions can go

either way, but they have to come from one of the two operands. In the %A example, if %X and %Y

were both known to have a clear low bit, then %A would have to have a cleared low bit. However,

in the %C example, the optimizer is allowed to assume that the 'undef' operand could be the same

as %Y, allowing the whole 'select' to be eliminated.

%A = xor undef, undef

%B = undef
%C = xor %B, %B

%D = undef
%E = icmp lt %D, 4

Chapter VI. Constants

48

%F = icmp gte %D, 4

Safe:
%A = undef
%B = undef
%C = undef
%D = undef
%E = undef
%F = undef

This example points out that two 'undef' operands are not necessarily the same. This can be

surprising to people (and also matches C semantics) where they assume that "X^X" is always zero,

even if X is undefined. This isn't true for a number of reasons, but the short answer is that an

'undef' "variable" can arbitrarily change its value over its "live range". This is true because the

variable doesn't actually have a live range. Instead, the value is logically read from arbitrary

registers that happen to be around when needed, so the value is not necessarily consistent over

time. In fact, %A and %C need to have the same semantics or the core LLVM "replace all uses with"

concept would not hold.

%A = fdiv undef, %X
%B = fdiv %X, undef

Safe:
%A = undef

b: unreachable

These examples show the crucial difference between an undefined value and undefined behavior. An

undefined value (like 'undef') is allowed to have an arbitrary bit-pattern. This means that the %A

operation can be constant folded to 'undef', because the 'undef' could be an SNaN, and fdiv is not

(currently) defined on SNaN's. However, in the second example, we can make a more aggressive

assumption: because the undef is allowed to be an arbitrary value, we are allowed to assume that

it could be zero. Since a divide by zero has undefined behavior, we are allowed to assume that the

operation does not execute at all. This allows us to delete the divide and all code after it. Because

the undefined operation "can't happen", the optimizer can assume that it occurs in dead code.

a: store undef -> %X
b: store %X -> undef
Safe:
a: <deleted>
b: unreachable

Undefined Values

49

These examples reiterate the fdiv example: a store of an undefined value can be assumed to not

have any effect; we can assume that the value is overwritten with bits that happen to match what

was already there. However, a store to an undefined location could clobber arbitrary memory,

therefore, it has undefined behavior.

Trap Values

Trap values are similar to undef values, however instead of representing an unspecified bit

pattern, they represent the fact that an instruction or constant expression which cannot evoke

side effects has nevertheless detected a condition which results in undefined behavior.

There is currently no way of representing a trap value in the IR; they only exist when produced

by operations such as add with the nsw flag.

Trap value behavior is defined in terms of value dependence:

• Values other than phi nodes depend on their operands.

• Phi nodes depend on the operand corresponding to their dynamic predecessor basic

block.

• Function arguments depend on the corresponding actual argument values in the dynamic

callers of their functions.

• Call instructions depend on the ret instructions that dynamically transfer control back

to them.

• Invoke instructions depend on the ret, unwind, or exception-throwing call instructions

that dynamically transfer control back to them.

• Non-volatile loads and stores depend on the most recent stores to all of the referenced

memory addresses, following the order in the IR (including loads and stores implied by

intrinsics such as @llvm.memcpy.)

• An instruction with externally visible side effects depends on the most recent preceding

instruction with externally visible side effects, following the order in the IR. (This

includes volatile operations.)

• An instruction control-depends on a terminator instruction if the terminator instruction

has multiple successors and the instruction is always executed when control transfers to

one of the successors, and may not be executed when control is transferred to another.

Chapter VI. Constants

50

• Additionally, an instruction also control-depends on a terminator instruction if the set of

instructions it otherwise depends on would be different if the terminator had transferred

control to a different successor.

• Dependence is transitive.

Whenever a trap value is generated, all values which depend on it evaluate to trap. If they have

side effects, the evoke their side effects as if each operand with a trap value were undef. If they

have externally-visible side effects, the behavior is undefined.

Here are some examples:

entry:
%trap = sub nuw i32 0, 1 ; Results in a trap value.
%still_trap = and i32 %trap, 0 ; Whereas (and i32 undef, 0) would return 0.
%trap_yet_again = getelementptr i32* @h, i32 %still_trap
store i32 0, i32* %trap_yet_again ; undefined behavior

store i32 %trap, i32* @g ; Trap value conceptually stored to memory.
%trap2 = load i32* @g ; Returns a trap value, not just undef.

volatile store i32 %trap, i32* @g ; External observation; undefined behavior.

%narrowaddr = bitcast i32* @g to i16*
%wideaddr = bitcast i32* @g to i64*
%trap3 = load i16* %narrowaddr ; Returns a trap value.
%trap4 = load i64* %wideaddr ; Returns a trap value.

%cmp = icmp slt i32 %trap, 0 ; Returns a trap value.
br i1 %cmp, label %true, label %end ; Branch to either destination.

true:
volatile store i32 0, i32* @g ; This is control-dependent on %cmp, so

; it has undefined behavior.
br label %end

end:
%p = phi i32 [0, %entry], [1, %true]

; Both edges into this PHI are
; control-dependent on %cmp, so this
; always results in a trap value.

Trap Values

51

volatile store i32 0, i32* @g ; This would depend on the store in %true
; if %cmp is true, or the store in %entry
; otherwise, so this is undefined behavior.

br i1 %cmp, label %second_true, label %second_end
; The same branch again, but this time the
; true block doesn't have side effects.

second_true:
; No side effects!
ret void

second_end:
volatile store i32 0, i32* @g ; This time, the instruction always depends

; on the store in %end. Also, it is
; control-equivalent to %end, so this is
; well-defined (again, ignoring earlier
; undefined behavior in this example).

Addresses of Basic Blocks

blockaddress(@function, %block)

The 'blockaddress' constant computes the address of the specified basic block in the specified

function, and always has an i8* type. Taking the address of the entry block is illegal.

This value only has defined behavior when used as an operand to the 'indirectbr' instruction, or

for comparisons against null. Pointer equality tests between labels addresses results in undefined

behavior — though, again, comparison against null is ok, and no label is equal to the null pointer.

This may be passed around as an opaque pointer sized value as long as the bits are not inspected.

This allows ptrtoint and arithmetic to be performed on these values so long as the original value

is reconstituted before the indirectbr instruction.

Finally, some targets may provide defined semantics when using the value as the operand to an

inline assembly, but that is target specific.

Constant Expressions

Constant expressions are used to allow expressions involving other constants to be used as

constants. Constant expressions may be of any first class type and may involve any LLVM

Chapter VI. Constants

52

operation that does not have side effects (e.g. load and call are not supported). The following is

the syntax for constant expressions:

trunc (CST to TYPE)

Truncate a constant to another type. The bit size of CST must be larger than the bit size of

TYPE. Both types must be integers.

zext (CST to TYPE)

Zero extend a constant to another type. The bit size of CST must be smaller than the bit size

of TYPE. Both types must be integers.

sext (CST to TYPE)

Sign extend a constant to another type. The bit size of CST must be smaller than the bit size

of TYPE. Both types must be integers.

fptrunc (CST to TYPE)

Truncate a floating point constant to another floating point type. The size of CST must be

larger than the size of TYPE. Both types must be floating point.

fpext (CST to TYPE)

Floating point extend a constant to another type. The size of CST must be smaller or equal to

the size of TYPE. Both types must be floating point.

fptoui (CST to TYPE)

Convert a floating point constant to the corresponding unsigned integer constant. TYPE

must be a scalar or vector integer type. CST must be of scalar or vector floating point type.

Both CST and TYPE must be scalars, or vectors of the same number of elements. If the value

won't fit in the integer type, the results are undefined.

fptosi (CST to TYPE)

Convert a floating point constant to the corresponding signed integer constant. TYPE must

be a scalar or vector integer type. CST must be of scalar or vector floating point type. Both

CST and TYPE must be scalars, or vectors of the same number of elements. If the value won't

fit in the integer type, the results are undefined.

uitofp (CST to TYPE)

Convert an unsigned integer constant to the corresponding floating point constant. TYPE

must be a scalar or vector floating point type. CST must be of scalar or vector integer type.

Constant Expressions

53

Both CST and TYPE must be scalars, or vectors of the same number of elements. If the value

won't fit in the floating point type, the results are undefined.

sitofp (CST to TYPE)

Convert a signed integer constant to the corresponding floating point constant. TYPE must

be a scalar or vector floating point type. CST must be of scalar or vector integer type. Both

CST and TYPE must be scalars, or vectors of the same number of elements. If the value won't

fit in the floating point type, the results are undefined.

ptrtoint (CST to TYPE)

Convert a pointer typed constant to the corresponding integer constant TYPE must be an

integer type. CST must be of pointer type. The CST value is zero extended, truncated, or

unchanged to make it fit in TYPE.

inttoptr (CST to TYPE)

Convert a integer constant to a pointer constant. TYPE must be a pointer type. CST must be

of integer type. The CST value is zero extended, truncated, or unchanged to make it fit in a

pointer size. This one is really dangerous!

bitcast (CST to TYPE)

Convert a constant, CST, to another TYPE. The constraints of the operands are the same as

those for the bitcast instruction.

getelementptr (CSTPTR, IDX0, IDX1, ...)

getelementptr inbounds (CSTPTR, IDX0, IDX1, ...)

Perform the getelementptr operation on constants. As with the getelementptr instruction,

the index list may have zero or more indexes, which are required to make sense for the type

of "CSTPTR".

select (COND, VAL1, VAL2)

Perform the select operation on constants.

icmp COND (VAL1, VAL2)

Performs the icmp operation on constants.

fcmp COND (VAL1, VAL2)

Performs the fcmp operation on constants.

Chapter VI. Constants

54

extractelement (VAL, IDX)

Perform the extractelement operation on constants.

insertelement (VAL, ELT, IDX)

Perform the insertelement operation on constants.

shufflevector (VEC1, VEC2, IDXMASK)

Perform the shufflevector operation on constants.

extractvalue (VAL, IDX0, IDX1, ...)

Perform the extractvalue operation on constants. The index list is interpreted in a similar

manner as indices in a 'getelementptr' operation. At least one index value must be specified.

insertvalue (VAL, ELT, IDX0, IDX1, ...)

Perform the insertvalue operation on constants. The index list is interpreted in a similar

manner as indices in a 'getelementptr' operation. At least one index value must be specified.

OPCODE (LHS, RHS)

Perform the specified operation of the LHS and RHS constants. OPCODE may be any of the

binary or bitwise binary operations. The constraints on operands are the same as those for

the corresponding instruction (e.g. no bitwise operations on floating point values are

allowed).

Constant Expressions

55

Chapter VI. Constants

56

Other Values

Inline Assembler Expressions

LLVM supports inline assembler expressions (as opposed to Module-Level Inline Assembly)

through the use of a special value. This value represents the inline assembler as a string

(containing the instructions to emit), a list of operand constraints (stored as a string), a flag that

indicates whether or not the inline asm expression has side effects, and a flag indicating whether

the function containing the asm needs to align its stack conservatively. An example inline

assembler expression is:

i32 (i32) asm "bswap $0", "=r,r"

Inline assembler expressions may only be used as the callee operand of a call instruction. Thus,

typically we have:

%X = call i32 asm "bswap $0", "=r,r"(i32 %Y)

Inline asms with side effects not visible in the constraint list must be marked as having side

effects. This is done through the use of the 'sideeffect' keyword, like so:

call void asm sideeffect "eieio", ""()

In some cases inline asms will contain code that will not work unless the stack is aligned in some

way, such as calls or SSE instructions on x86, yet will not contain code that does that alignment

within the asm. The compiler should make conservative assumptions about what the asm might

contain and should generate its usual stack alignment code in the prologue if the 'alignstack'

keyword is present:

call void asm alignstack "eieio", ""()

If both keywords appear the 'sideeffect' keyword must come first.

TODO: The format of the asm and constraints string still need to be documented here. Constraints

on what can be done (e.g. duplication, moving, etc need to be documented). This is probably best

done by reference to another document that covers inline asm from a holistic perspective.

Inline Assembler Expressions

57

Inline Asm Metadata

The call instructions that wrap inline asm nodes may have a "!srcloc" MDNode attached to it that

contains a list of constant integers. If present, the code generator will use the integer as the

location cookie value when report errors through the LLVMContext error reporting mechanisms.

This allows a front-end to correlate backend errors that occur with inline asm back to the source

code that produced it. For example:

call void asm sideeffect "something bad", ""(), !srcloc !42
...
!42 = !{ i32 1234567 }

It is up to the front-end to make sense of the magic numbers it places in the IR. If the MDNode

contains multiple constants, the code generator will use the one that corresponds to the line of

the asm that the error occurs on.

Metadata Nodes and Metadata Strings

LLVM IR allows metadata to be attached to instructions in the program that can convey extra

information about the code to the optimizers and code generator. One example application of

metadata is source-level debug information. There are two metadata primitives: strings and

nodes. All metadata has the metadata type and is identified in syntax by a preceding exclamation

point ('!').

A metadata string is a string surrounded by double quotes. It can contain any character by

escaping non-printable characters with "\xx" where "xx" is the two digit hex code. For example:

"!"test\00"".

Metadata nodes are represented with notation similar to structure constants (a comma separated

list of elements, surrounded by braces and preceded by an exclamation point). For example: "!{

metadata !"test\00", i32 10}". Metadata nodes can have any values as their operand.

A named metadata is a collection of metadata nodes, which can be looked up in the module

symbol table. For example: "!foo = metadata !{!4, !3}".

Metadata can be used as function arguments. Here llvm.dbg.value function is using two

metadata arguments.

Chapter VII. Other Values

58

call void @llvm.dbg.value(metadata !24, i64 0, metadata !25)

Metadata can be attached with an instruction. Here metadata !21 is attached with add instruction

using !dbg identifier.

%indvar.next = add i64 %indvar, 1, !dbg !21

Metadata Nodes and Metadata Strings

59

Chapter VII. Other Values

60

Intrinsic Global Variables

LLVM has a number of "magic" global variables that contain data that affect code generation or

other IR semantics. These are documented here. All globals of this sort should have a section

specified as "llvm.metadata". This section and all globals that start with "llvm." are reserved for

use by LLVM.

The 'llvm.used' Global Variable

The @llvm.used global is an array with i8* element type which has appending linkage. This array

contains a list of pointers to global variables and functions which may optionally have a pointer

cast formed of bitcast or getelementptr. For example, a legal use of it is:

@X = global i8 4
@Y = global i32 123

@llvm.used = appending global [2 x i8*] [
i8* @X,
i8* bitcast (i32* @Y to i8*)

], section "llvm.metadata"

If a global variable appears in the @llvm.used list, then the compiler, assembler, and linker are

required to treat the symbol as if there is a reference to the global that it cannot see. For example,

if a variable has internal linkage and no references other than that from the @llvm.used list, it

cannot be deleted. This is commonly used to represent references from inline asms and other

things the compiler cannot "see", and corresponds to "attribute((used))" in GNU C.

On some targets, the code generator must emit a directive to the assembler or object file to

prevent the assembler and linker from molesting the symbol.

The 'llvm.compiler.used' Global Variable

The @llvm.compiler.used directive is the same as the @llvm.used directive, except that it only

prevents the compiler from touching the symbol. On targets that support it, this allows an

intelligent linker to optimize references to the symbol without being impeded as it would be by

@llvm.used.

The 'llvm.used' Global Variable

61

This is a rare construct that should only be used in rare circumstances, and should not be exposed

to source languages.

The 'llvm.global_ctors' Global Variable

%0 = type { i32, void ()* }
@llvm.global_ctors = appending global [1 x %0] [%0 { i32 65535, void ()* @ctor }]

The @llvm.global_ctors array contains a list of constructor functions and associated priorities.

The functions referenced by this array will be called in ascending order of priority (i.e. lowest

first) when the module is loaded. The order of functions with the same priority is not defined.

The 'llvm.global_dtors' Global Variable

%0 = type { i32, void ()* }
@llvm.global_dtors = appending global [1 x %0] [%0 { i32 65535, void ()* @dtor }]

The @llvm.global_dtors array contains a list of destructor functions and associated priorities.

The functions referenced by this array will be called in descending order of priority (i.e. highest

first) when the module is loaded. The order of functions with the same priority is not defined.

Chapter VIII. Intrinsic Global Variables

62

Instruction Reference

The LLVM instruction set consists of several different classifications of instructions: terminator

instructions, binary instructions, bitwise binary instructions, memory instructions, and other

instructions.

Terminator Instructions

As mentioned previously, every basic block in a program ends with a "Terminator" instruction,

which indicates which block should be executed after the current block is finished. These

terminator instructions typically yield a 'void' value: they produce control flow, not values (the

one exception being the 'invoke' instruction).

The terminator instructions are: 'ret', 'br', 'switch', 'indirectbr', 'invoke', 'unwind', 'resume',

and 'unreachable'.

'ret' Instruction

Syntax:

ret <type> <value> ; Return a value from a non-void function
ret void ; Return from void function

Overview:

The 'ret' instruction is used to return control flow (and optionally a value) from a function back

to the caller.

There are two forms of the 'ret' instruction: one that returns a value and then causes control

flow, and one that just causes control flow to occur.

Arguments:

The 'ret' instruction optionally accepts a single argument, the return value. The type of the

return value must be a 'first class' type.

Terminator Instructions

63

A function is not well formed if it it has a non-void return type and contains a 'ret' instruction

with no return value or a return value with a type that does not match its type, or if it has a void

return type and contains a 'ret' instruction with a return value.

Semantics:

When the 'ret' instruction is executed, control flow returns back to the calling function's

context. If the caller is a "call" instruction, execution continues at the instruction after the call.

If the caller was an "invoke" instruction, execution continues at the beginning of the "normal"

destination block. If the instruction returns a value, that value shall set the call or invoke

instruction's return value.

Example:

ret i32 5 ; Return an integer value of 5
ret void ; Return from a void function
ret { i32, i8 } { i32 4, i8 2 } ; Return a struct of values 4 and 2

'br' Instruction

Syntax:

br i1 <cond>, label <iftrue>, label <iffalse>
br label <dest> ; Unconditional branch

Overview:

The 'br' instruction is used to cause control flow to transfer to a different basic block in the

current function. There are two forms of this instruction, corresponding to a conditional branch

and an unconditional branch.

Arguments:

The conditional branch form of the 'br' instruction takes a single 'i1' value and two 'label'

values. The unconditional form of the 'br' instruction takes a single 'label' value as a target.

Chapter IX. Instruction Reference

64

Semantics:

Upon execution of a conditional 'br' instruction, the 'i1' argument is evaluated. If the value is

true, control flows to the 'iftrue' label argument. If "cond" is false, control flows to the

'iffalse' label argument.

Example:

Test:
%cond = icmp eq i32 %a, %b
br i1 %cond, label %IfEqual, label %IfUnequal

IfEqual:
ret i32 1

IfUnequal:
ret i32 0

'switch' Instruction

Syntax:

switch <intty> <value>, label <defaultdest> [<intty> <val>, label <dest> ...]

Overview:

The 'switch' instruction is used to transfer control flow to one of several different places. It is a

generalization of the 'br' instruction, allowing a branch to occur to one of many possible

destinations.

Arguments:

The 'switch' instruction uses three parameters: an integer comparison value 'value', a default

'label' destination, and an array of pairs of comparison value constants and 'label's. The table is

not allowed to contain duplicate constant entries.

Semantics:

The switch instruction specifies a table of values and destinations. When the 'switch' instruction

is executed, this table is searched for the given value. If the value is found, control flow is

Terminator Instructions

65

transferred to the corresponding destination; otherwise, control flow is transferred to the default

destination.

Implementation:

Depending on properties of the target machine and the particular switch instruction, this

instruction may be code generated in different ways. For example, it could be generated as a

series of chained conditional branches or with a lookup table.

Example:

; Emulate a conditional br instruction
%Val = zext i1 %value to i32
switch i32 %Val, label %truedest [i32 0, label %falsedest]

; Emulate an unconditional br instruction
switch i32 0, label %dest []

; Implement a jump table:
switch i32 %val, label %otherwise [i32 0, label %onzero

i32 1, label %onone
i32 2, label %ontwo]

'indirectbr' Instruction

Syntax:

indirectbr <somety>* <address>, [label <dest1>, label <dest2>, ...]

Overview:

The 'indirectbr' instruction implements an indirect branch to a label within the current

function, whose address is specified by "address". Address must be derived from a blockaddress

constant.

Arguments:

The 'address' argument is the address of the label to jump to. The rest of the arguments indicate

the full set of possible destinations that the address may point to. Blocks are allowed to occur

multiple times in the destination list, though this isn't particularly useful.

Chapter IX. Instruction Reference

66

This destination list is required so that dataflow analysis has an accurate understanding of the

CFG.

Semantics:

Control transfers to the block specified in the address argument. All possible destination blocks

must be listed in the label list, otherwise this instruction has undefined behavior. This implies

that jumps to labels defined in other functions have undefined behavior as well.

Implementation:

This is typically implemented with a jump through a register.

Example:

indirectbr i8* %Addr, [label %bb1, label %bb2, label %bb3]

'invoke' Instruction

Syntax:

<result> = invoke [cconv] [ret attrs] <ptr to function ty> <function ptr val>(<function args>) [fn attrs]
to label <normal label> unwind label <exception label>

Overview:

The 'invoke' instruction causes control to transfer to a specified function, with the possibility of

control flow transfer to either the 'normal' label or the 'exception' label. If the callee function

returns with the "ret" instruction, control flow will return to the "normal" label. If the callee (or

any indirect callees) returns with the "unwind" instruction, control is interrupted and continued

at the dynamically nearest "exception" label.

The 'exception' label is a landing pad for the exception. As such, 'exception' label is required to

have the "landingpad" instruction, which contains the information about about the behavior of

the program after unwinding happens, as its first non-PHI instruction. The restrictions on the

"landingpad" instruction's tightly couples it to the "invoke" instruction, so that the important

information contained within the "landingpad" instruction can't be lost through normal code

motion.

Terminator Instructions

67

http://www.llvm.org/docs/ExceptionHandling.html#overview

Arguments:

This instruction requires several arguments:

1. The optional "cconv" marker indicates which calling convention the call should use. If

none is specified, the call defaults to using C calling conventions.

2. The optional Parameter Attributes list for return values. Only 'zeroext', 'signext', and

'inreg' attributes are valid here.

3. 'ptr to function ty': shall be the signature of the pointer to function value being

invoked. In most cases, this is a direct function invocation, but indirect invokes are just

as possible, branching off an arbitrary pointer to function value.

4. 'function ptr val': An LLVM value containing a pointer to a function to be invoked.

5. 'function args': argument list whose types match the function signature argument

types and parameter attributes. All arguments must be of first class type. If the function

signature indicates the function accepts a variable number of arguments, the extra

arguments can be specified.

6. 'normal label': the label reached when the called function executes a 'ret' instruction.

7. 'exception label': the label reached when a callee returns with the unwind instruction.

8. The optional function attributes list. Only 'noreturn', 'nounwind', 'readonly' and

'readnone' attributes are valid here.

Semantics:

This instruction is designed to operate as a standard 'call' instruction in most regards. The

primary difference is that it establishes an association with a label, which is used by the runtime

library to unwind the stack.

This instruction is used in languages with destructors to ensure that proper cleanup is performed

in the case of either a longjmp or a thrown exception. Additionally, this is important for

implementation of 'catch' clauses in high-level languages that support them.

For the purposes of the SSA form, the definition of the value returned by the 'invoke' instruction

is deemed to occur on the edge from the current block to the "normal" label. If the callee unwinds

then no return value is available.

Note that the code generator does not yet completely support unwind, and that the invoke/

unwind semantics are likely to change in future versions.

Chapter IX. Instruction Reference

68

Example:

%retval = invoke i32 @Test(i32 15) to label %Continue
unwind label %TestCleanup ; {i32}:retval set

%retval = invoke coldcc i32 %Testfnptr(i32 15) to label %Continue
unwind label %TestCleanup ; {i32}:retval set

'unwind' Instruction

Syntax:

unwind

Overview:

The 'unwind' instruction unwinds the stack, continuing control flow at the first callee in the

dynamic call stack which used an invoke instruction to perform the call. This is primarily used to

implement exception handling.

Semantics:

The 'unwind' instruction causes execution of the current function to immediately halt. The

dynamic call stack is then searched for the first invoke instruction on the call stack. Once found,

execution continues at the "exceptional" destination block specified by the invoke instruction. If

there is no invoke instruction in the dynamic call chain, undefined behavior results.

Note that the code generator does not yet completely support unwind, and that the invoke/

unwind semantics are likely to change in future versions.

'resume' Instruction

Syntax:

resume <type> <value>

Overview:

The 'resume' instruction is a terminator instruction that has no successors.

Terminator Instructions

69

Arguments:

The 'resume' instruction requires one argument, which must have the same type as the result of

any 'landingpad' instruction in the same function.

Semantics:

The 'resume' instruction resumes propagation of an existing (in-flight) exception whose

unwinding was interrupted with a landingpad instruction.

Example:

resume { i8*, i32 } %exn

'unreachable' Instruction

Syntax:

unreachable

Overview:

The 'unreachable' instruction has no defined semantics. This instruction is used to inform the

optimizer that a particular portion of the code is not reachable. This can be used to indicate that

the code after a no-return function cannot be reached, and other facts.

Semantics:

The 'unreachable' instruction has no defined semantics.

Binary Operations

Binary operators are used to do most of the computation in a program. They require two

operands of the same type, execute an operation on them, and produce a single value. The

operands might represent multiple data, as is the case with the vector data type. The result value

has the same type as its operands.

There are several different binary operators:

Chapter IX. Instruction Reference

70

'add' Instruction

Syntax:

<result> = add <ty> <op1>, <op2> ; yields {ty}:result
<result> = add nuw <ty> <op1>, <op2> ; yields {ty}:result
<result> = add nsw <ty> <op1>, <op2> ; yields {ty}:result
<result> = add nuw nsw <ty> <op1>, <op2> ; yields {ty}:result

Overview:

The 'add' instruction returns the sum of its two operands.

Arguments:

The two arguments to the 'add' instruction must be integer or vector of integer values. Both

arguments must have identical types.

Semantics:

The value produced is the integer sum of the two operands.

If the sum has unsigned overflow, the result returned is the mathematical result modulo 2n,

where n is the bit width of the result.

Because LLVM integers use a two's complement representation, this instruction is appropriate for

both signed and unsigned integers.

nuw and nsw stand for "No Unsigned Wrap" and "No Signed Wrap", respectively. If the nuw and/or

nsw keywords are present, the result value of the add is a trap value if unsigned and/or signed

overflow, respectively, occurs.

Example:

<result> = add i32 4, %var ; yields {i32}:result = 4 + %var

Binary Operations

71

'fadd' Instruction

Syntax:

<result> = fadd <ty> <op1>, <op2> ; yields {ty}:result

Overview:

The 'fadd' instruction returns the sum of its two operands.

Arguments:

The two arguments to the 'fadd' instruction must be floating point or vector of floating point

values. Both arguments must have identical types.

Semantics:

The value produced is the floating point sum of the two operands.

Example:

<result> = fadd float 4.0, %var ; yields {float}:result = 4.0 + %var

'sub' Instruction

Syntax:

<result> = sub <ty> <op1>, <op2> ; yields {ty}:result
<result> = sub nuw <ty> <op1>, <op2> ; yields {ty}:result
<result> = sub nsw <ty> <op1>, <op2> ; yields {ty}:result
<result> = sub nuw nsw <ty> <op1>, <op2> ; yields {ty}:result

Overview:

The 'sub' instruction returns the difference of its two operands.

Note that the 'sub' instruction is used to represent the 'neg' instruction present in most other

intermediate representations.

Chapter IX. Instruction Reference

72

Arguments:

The two arguments to the 'sub' instruction must be integer or vector of integer values. Both

arguments must have identical types.

Semantics:

The value produced is the integer difference of the two operands.

If the difference has unsigned overflow, the result returned is the mathematical result modulo 2n,

where n is the bit width of the result.

Because LLVM integers use a two's complement representation, this instruction is appropriate for

both signed and unsigned integers.

nuw and nsw stand for "No Unsigned Wrap" and "No Signed Wrap", respectively. If the nuw and/or

nsw keywords are present, the result value of the sub is a trap value if unsigned and/or signed

overflow, respectively, occurs.

Example:

<result> = sub i32 4, %var ; yields {i32}:result = 4 - %var
<result> = sub i32 0, %val ; yields {i32}:result = -%var

'fsub' Instruction

Syntax:

<result> = fsub <ty> <op1>, <op2> ; yields {ty}:result

Overview:

The 'fsub' instruction returns the difference of its two operands.

Note that the 'fsub' instruction is used to represent the 'fneg' instruction present in most other

intermediate representations.

Binary Operations

73

Arguments:

The two arguments to the 'fsub' instruction must be floating point or vector of floating point

values. Both arguments must have identical types.

Semantics:

The value produced is the floating point difference of the two operands.

Example:

<result> = fsub float 4.0, %var ; yields {float}:result = 4.0 - %var
<result> = fsub float -0.0, %val ; yields {float}:result = -%var

'mul' Instruction

Syntax:

<result> = mul <ty> <op1>, <op2> ; yields {ty}:result
<result> = mul nuw <ty> <op1>, <op2> ; yields {ty}:result
<result> = mul nsw <ty> <op1>, <op2> ; yields {ty}:result
<result> = mul nuw nsw <ty> <op1>, <op2> ; yields {ty}:result

Overview:

The 'mul' instruction returns the product of its two operands.

Arguments:

The two arguments to the 'mul' instruction must be integer or vector of integer values. Both

arguments must have identical types.

Semantics:

The value produced is the integer product of the two operands.

If the result of the multiplication has unsigned overflow, the result returned is the mathematical

result modulo 2n, where n is the bit width of the result.

Chapter IX. Instruction Reference

74

Because LLVM integers use a two's complement representation, and the result is the same width

as the operands, this instruction returns the correct result for both signed and unsigned integers.

If a full product (e.g. i32xi32->i64) is needed, the operands should be sign-extended or zero-

extended as appropriate to the width of the full product.

nuw and nsw stand for "No Unsigned Wrap" and "No Signed Wrap", respectively. If the nuw and/or

nsw keywords are present, the result value of the mul is a trap value if unsigned and/or signed

overflow, respectively, occurs.

Example:

<result> = mul i32 4, %var ; yields {i32}:result = 4 * %var

'fmul' Instruction

Syntax:

<result> = fmul <ty> <op1>, <op2> ; yields {ty}:result

Overview:

The 'fmul' instruction returns the product of its two operands.

Arguments:

The two arguments to the 'fmul' instruction must be floating point or vector of floating point

values. Both arguments must have identical types.

Semantics:

The value produced is the floating point product of the two operands.

Example:

<result> = fmul float 4.0, %var ; yields {float}:result = 4.0 * %var

Binary Operations

75

'udiv' Instruction

Syntax:

<result> = udiv <ty> <op1>, <op2> ; yields {ty}:result
<result> = udiv exact <ty> <op1>, <op2> ; yields {ty}:result

Overview:

The 'udiv' instruction returns the quotient of its two operands.

Arguments:

The two arguments to the 'udiv' instruction must be integer or vector of integer values. Both

arguments must have identical types.

Semantics:

The value produced is the unsigned integer quotient of the two operands.

Note that unsigned integer division and signed integer division are distinct operations; for signed

integer division, use 'sdiv'.

Division by zero leads to undefined behavior.

If the exact keyword is present, the result value of the udiv is a trap value if %op1 is not a

multiple of %op2 (as such, "((a udiv exact b) mul b) == a").

Example:

<result> = udiv i32 4, %var ; yields {i32}:result = 4 / %var

'sdiv' Instruction

Syntax:

<result> = sdiv <ty> <op1>, <op2> ; yields {ty}:result
<result> = sdiv exact <ty> <op1>, <op2> ; yields {ty}:result

Chapter IX. Instruction Reference

76

Overview:

The 'sdiv' instruction returns the quotient of its two operands.

Arguments:

The two arguments to the 'sdiv' instruction must be integer or vector of integer values. Both

arguments must have identical types.

Semantics:

The value produced is the signed integer quotient of the two operands rounded towards zero.

Note that signed integer division and unsigned integer division are distinct operations; for

unsigned integer division, use 'udiv'.

Division by zero leads to undefined behavior. Overflow also leads to undefined behavior; this is a

rare case, but can occur, for example, by doing a 32-bit division of -2147483648 by -1.

If the exact keyword is present, the result value of the sdiv is a trap value if the result would be

rounded.

Example:

<result> = sdiv i32 4, %var ; yields {i32}:result = 4 / %var

'fdiv' Instruction

Syntax:

<result> = fdiv <ty> <op1>, <op2> ; yields {ty}:result

Overview:

The 'fdiv' instruction returns the quotient of its two operands.

Arguments:

The two arguments to the 'fdiv' instruction must be floating point or vector of floating point

values. Both arguments must have identical types.

Binary Operations

77

Semantics:

The value produced is the floating point quotient of the two operands.

Example:

<result> = fdiv float 4.0, %var ; yields {float}:result = 4.0 / %var

'urem' Instruction

Syntax:

<result> = urem <ty> <op1>, <op2> ; yields {ty}:result

Overview:

The 'urem' instruction returns the remainder from the unsigned division of its two arguments.

Arguments:

The two arguments to the 'urem' instruction must be integer or vector of integer values. Both

arguments must have identical types.

Semantics:

This instruction returns the unsigned integer remainder of a division. This instruction always

performs an unsigned division to get the remainder.

Note that unsigned integer remainder and signed integer remainder are distinct operations; for

signed integer remainder, use 'srem'.

Taking the remainder of a division by zero leads to undefined behavior.

Example:

<result> = urem i32 4, %var ; yields {i32}:result = 4 % %var

Chapter IX. Instruction Reference

78

'srem' Instruction

Syntax:

<result> = srem <ty> <op1>, <op2> ; yields {ty}:result

Overview:

The 'srem' instruction returns the remainder from the signed division of its two operands. This

instruction can also take vector versions of the values in which case the elements must be

integers.

Arguments:

The two arguments to the 'srem' instruction must be integer or vector of integer values. Both

arguments must have identical types.

Semantics:

This instruction returns the remainder of a division (where the result is either zero or has the

same sign as the dividend, op1), not the modulo operator (where the result is either zero or has

the same sign as the divisor, op2) of a value. For more information about the difference, see The

Math Forum. For a table of how this is implemented in various languages, please see Wikipedia:

modulo operation.

Note that signed integer remainder and unsigned integer remainder are distinct operations; for

unsigned integer remainder, use 'urem'.

Taking the remainder of a division by zero leads to undefined behavior. Overflow also leads to

undefined behavior; this is a rare case, but can occur, for example, by taking the remainder of a

32-bit division of -2147483648 by -1. (The remainder doesn't actually overflow, but this rule lets

srem be implemented using instructions that return both the result of the division and the

remainder.)

Example:

<result> = srem i32 4, %var ; yields {i32}:result = 4 % %var

Binary Operations

79

http://mathforum.org/dr.math/problems/anne.4.28.99.html
http://mathforum.org/dr.math/problems/anne.4.28.99.html
http://en.wikipedia.org/wiki/Modulo_operation
http://en.wikipedia.org/wiki/Modulo_operation

'frem' Instruction

Syntax:

<result> = frem <ty> <op1>, <op2> ; yields {ty}:result

Overview:

The 'frem' instruction returns the remainder from the division of its two operands.

Arguments:

The two arguments to the 'frem' instruction must be floating point or vector of floating point

values. Both arguments must have identical types.

Semantics:

This instruction returns the remainder of a division. The remainder has the same sign as the

dividend.

Example:

<result> = frem float 4.0, %var ; yields {float}:result = 4.0 % %var

Bitwise Binary Operations

Bitwise binary operators are used to do various forms of bit-twiddling in a program. They are

generally very efficient instructions and can commonly be strength reduced from other

instructions. They require two operands of the same type, execute an operation on them, and

produce a single value. The resulting value is the same type as its operands.

'shl' Instruction

Syntax:

<result> = shl <ty> <op1>, <op2> ; yields {ty}:result
<result> = shl nuw <ty> <op1>, <op2> ; yields {ty}:result
<result> = shl nsw <ty> <op1>, <op2> ; yields {ty}:result
<result> = shl nuw nsw <ty> <op1>, <op2> ; yields {ty}:result

Chapter IX. Instruction Reference

80

Overview:

The 'shl' instruction returns the first operand shifted to the left a specified number of bits.

Arguments:

Both arguments to the 'shl' instruction must be the same integer or vector of integer type. 'op2'

is treated as an unsigned value.

Semantics:

The value produced is op1 * 2op2 mod 2n, where n is the width of the result. If op2 is (statically or

dynamically) negative or equal to or larger than the number of bits in op1, the result is undefined.

If the arguments are vectors, each vector element of op1 is shifted by the corresponding shift

amount in op2.

If the nuw keyword is present, then the shift produces a trap value if it shifts out any non-zero

bits. If the nsw keyword is present, then the shift produces a trap value if it shifts out any bits that

disagree with the resultant sign bit. As such, NUW/NSW have the same semantics as they would if

the shift were expressed as a mul instruction with the same nsw/nuw bits in (mul %op1, (shl 1,

%op2)).

Example:

<result> = shl i32 4, %var ; yields {i32}: 4 << %var
<result> = shl i32 4, 2 ; yields {i32}: 16
<result> = shl i32 1, 10 ; yields {i32}: 1024
<result> = shl i32 1, 32 ; undefined
<result> = shl <2 x i32> < i32 1, i32 1>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 2, i32 4>

'lshr' Instruction

Syntax:

<result> = lshr <ty> <op1>, <op2> ; yields {ty}:result
<result> = lshr exact <ty> <op1>, <op2> ; yields {ty}:result

Bitwise Binary Operations

81

Overview:

The 'lshr' instruction (logical shift right) returns the first operand shifted to the right a specified

number of bits with zero fill.

Arguments:

Both arguments to the 'lshr' instruction must be the same integer or vector of integer type. 'op2'

is treated as an unsigned value.

Semantics:

This instruction always performs a logical shift right operation. The most significant bits of the

result will be filled with zero bits after the shift. If op2 is (statically or dynamically) equal to or

larger than the number of bits in op1, the result is undefined. If the arguments are vectors, each

vector element of op1 is shifted by the corresponding shift amount in op2.

If the exact keyword is present, the result value of the lshr is a trap value if any of the bits

shifted out are non-zero.

Example:

<result> = lshr i32 4, 1 ; yields {i32}:result = 2
<result> = lshr i32 4, 2 ; yields {i32}:result = 1
<result> = lshr i8 4, 3 ; yields {i8}:result = 0
<result> = lshr i8 -2, 1 ; yields {i8}:result = 0x7FFFFFFF
<result> = lshr i32 1, 32 ; undefined
<result> = lshr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 0x7FFFFFFF, i32 1>

'ashr' Instruction

Syntax:

<result> = ashr <ty> <op1>, <op2> ; yields {ty}:result
<result> = ashr exact <ty> <op1>, <op2> ; yields {ty}:result

Overview:

The 'ashr' instruction (arithmetic shift right) returns the first operand shifted to the right a

specified number of bits with sign extension.

Chapter IX. Instruction Reference

82

Arguments:

Both arguments to the 'ashr' instruction must be the same integer or vector of integer type. 'op2'

is treated as an unsigned value.

Semantics:

This instruction always performs an arithmetic shift right operation, The most significant bits of

the result will be filled with the sign bit of op1. If op2 is (statically or dynamically) equal to or

larger than the number of bits in op1, the result is undefined. If the arguments are vectors, each

vector element of op1 is shifted by the corresponding shift amount in op2.

If the exact keyword is present, the result value of the ashr is a trap value if any of the bits

shifted out are non-zero.

Example:

<result> = ashr i32 4, 1 ; yields {i32}:result = 2
<result> = ashr i32 4, 2 ; yields {i32}:result = 1
<result> = ashr i8 4, 3 ; yields {i8}:result = 0
<result> = ashr i8 -2, 1 ; yields {i8}:result = -1
<result> = ashr i32 1, 32 ; undefined
<result> = ashr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 3> ; yields: result=<2 x i32> < i32 -1, i32 0>

'and' Instruction

Syntax:

<result> = and <ty> <op1>, <op2> ; yields {ty}:result

Overview:

The 'and' instruction returns the bitwise logical and of its two operands.

Arguments:

The two arguments to the 'and' instruction must be integer or vector of integer values. Both

arguments must have identical types.

Bitwise Binary Operations

83

Semantics:

The truth table used for the 'and' instruction is:

In0 In1 Out

0 0 0

0 1 0

1 0 0

1 1 1

Example:

<result> = and i32 4, %var ; yields {i32}:result = 4 & %var
<result> = and i32 15, 40 ; yields {i32}:result = 8
<result> = and i32 4, 8 ; yields {i32}:result = 0

'or' Instruction

Syntax:

<result> = or <ty> <op1>, <op2> ; yields {ty}:result

Overview:

The 'or' instruction returns the bitwise logical inclusive or of its two operands.

Arguments:

The two arguments to the 'or' instruction must be integer or vector of integer values. Both

arguments must have identical types.

Semantics:

The truth table used for the 'or' instruction is:

In0 In1 Out

0 0 0

0 1 1

Chapter IX. Instruction Reference

84

1 0 1

1 1 1

Example:

<result> = or i32 4, %var ; yields {i32}:result = 4 | %var
<result> = or i32 15, 40 ; yields {i32}:result = 47
<result> = or i32 4, 8 ; yields {i32}:result = 12

'xor' Instruction

Syntax:

<result> = xor <ty> <op1>, <op2> ; yields {ty}:result

Overview:

The 'xor' instruction returns the bitwise logical exclusive or of its two operands. The xor is used

to implement the "one's complement" operation, which is the "~" operator in C.

Arguments:

The two arguments to the 'xor' instruction must be integer or vector of integer values. Both

arguments must have identical types.

Semantics:

The truth table used for the 'xor' instruction is:

In0 In1 Out

0 0 0

0 1 1

1 0 1

1 1 0

Bitwise Binary Operations

85

Example:

<result> = xor i32 4, %var ; yields {i32}:result = 4 ^ %var
<result> = xor i32 15, 40 ; yields {i32}:result = 39
<result> = xor i32 4, 8 ; yields {i32}:result = 12
<result> = xor i32 %V, -1 ; yields {i32}:result = ~%V

Vector Operations

LLVM supports several instructions to represent vector operations in a target-independent

manner. These instructions cover the element-access and vector-specific operations needed to

process vectors effectively. While LLVM does directly support these vector operations, many

sophisticated algorithms will want to use target-specific intrinsics to take full advantage of a

specific target.

'extractelement' Instruction

Syntax:

<result> = extractelement <n x <ty>> <val>, i32 <idx> ; yields <ty>

Overview:

The 'extractelement' instruction extracts a single scalar element from a vector at a specified

index.

Arguments:

The first operand of an 'extractelement' instruction is a value of vector type. The second

operand is an index indicating the position from which to extract the element. The index may be

a variable.

Semantics:

The result is a scalar of the same type as the element type of val. Its value is the value at position

idx of val. If idx exceeds the length of val, the results are undefined.

Chapter IX. Instruction Reference

86

Example:

<result> = extractelement <4 x i32> %vec, i32 0 ; yields i32

'insertelement' Instruction

Syntax:

<result> = insertelement <n x <ty>> <val>, <ty> <elt>, i32 <idx> ; yields <n x <ty>>

Overview:

The 'insertelement' instruction inserts a scalar element into a vector at a specified index.

Arguments:

The first operand of an 'insertelement' instruction is a value of vector type. The second operand

is a scalar value whose type must equal the element type of the first operand. The third operand

is an index indicating the position at which to insert the value. The index may be a variable.

Semantics:

The result is a vector of the same type as val. Its element values are those of val except at

position idx, where it gets the value elt. If idx exceeds the length of val, the results are

undefined.

Example:

<result> = insertelement <4 x i32> %vec, i32 1, i32 0 ; yields <4 x i32>

'shufflevector' Instruction

Syntax:

<result> = shufflevector <n x <ty>> <v1>, <n x <ty>> <v2>, <m x i32> <mask> ; yields <m x <ty>>

Vector Operations

87

Overview:

The 'shufflevector' instruction constructs a permutation of elements from two input vectors,

returning a vector with the same element type as the input and length that is the same as the

shuffle mask.

Arguments:

The first two operands of a 'shufflevector' instruction are vectors with types that match each

other. The third argument is a shuffle mask whose element type is always 'i32'. The result of the

instruction is a vector whose length is the same as the shuffle mask and whose element type is

the same as the element type of the first two operands.

The shuffle mask operand is required to be a constant vector with either constant integer or

undef values.

Semantics:

The elements of the two input vectors are numbered from left to right across both of the vectors.

The shuffle mask operand specifies, for each element of the result vector, which element of the

two input vectors the result element gets. The element selector may be undef (meaning "don't

care") and the second operand may be undef if performing a shuffle from only one vector.

Example:

<result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
<4 x i32> <i32 0, i32 4, i32 1, i32 5> ; yields <4 x i32>

<result> = shufflevector <4 x i32> %v1, <4 x i32> undef,
<4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32> - Identity shuffle.

<result> = shufflevector <8 x i32> %v1, <8 x i32> undef,
<4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32>

<result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
<8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 > ; yields <8 x i32>

Aggregate Operations

LLVM supports several instructions for working with aggregate values.

Chapter IX. Instruction Reference

88

'extractvalue' Instruction

Syntax:

<result> = extractvalue <aggregate type> <val>, <idx>{, <idx>}*

Overview:

The 'extractvalue' instruction extracts the value of a member field from an aggregate value.

Arguments:

The first operand of an 'extractvalue' instruction is a value of struct or array type. The operands

are constant indices to specify which value to extract in a similar manner as indices in a

'getelementptr' instruction.

The major differences to getelementptr indexing are:

• Since the value being indexed is not a pointer, the first index is omitted and assumed to

be zero.

• At least one index must be specified.

• Not only struct indices but also array indices must be in bounds.

Semantics:

The result is the value at the position in the aggregate specified by the index operands.

Example:

<result> = extractvalue {i32, float} %agg, 0 ; yields i32

'insertvalue' Instruction

Syntax:

<result> = insertvalue <aggregate type> <val>, <ty> <elt>, <idx>{, <idx>}* ; yields <aggregate type>

Overview:

The 'insertvalue' instruction inserts a value into a member field in an aggregate value.

Aggregate Operations

89

Arguments:

The first operand of an 'insertvalue' instruction is a value of struct or array type. The second

operand is a first-class value to insert. The following operands are constant indices indicating the

position at which to insert the value in a similar manner as indices in a 'extractvalue'

instruction. The value to insert must have the same type as the value identified by the indices.

Semantics:

The result is an aggregate of the same type as val. Its value is that of val except that the value at

the position specified by the indices is that of elt.

Example:

%agg1 = insertvalue {i32, float} undef, i32 1, 0 ; yields {i32 1, float undef}
%agg2 = insertvalue {i32, float} %agg1, float %val, 1 ; yields {i32 1, float %val}
%agg3 = insertvalue {i32, {float}} %agg1, float %val, 1, 0 ; yields {i32 1, float %val}

Memory Access and Addressing Operations

A key design point of an SSA-based representation is how it represents memory. In LLVM, no

memory locations are in SSA form, which makes things very simple. This section describes how to

read, write, and allocate memory in LLVM.

'alloca' Instruction

Syntax:

<result> = alloca <type>[, <ty> <NumElements>][, align <alignment>] ; yields {type*}:result

Overview:

The 'alloca' instruction allocates memory on the stack frame of the currently executing

function, to be automatically released when this function returns to its caller. The object is

always allocated in the generic address space (address space zero).

Chapter IX. Instruction Reference

90

Arguments:

The 'alloca' instruction allocates sizeof(<type>)*NumElements bytes of memory on the runtime

stack, returning a pointer of the appropriate type to the program. If "NumElements" is specified,

it is the number of elements allocated, otherwise "NumElements" is defaulted to be one. If a

constant alignment is specified, the value result of the allocation is guaranteed to be aligned to at

least that boundary. If not specified, or if zero, the target can choose to align the allocation on

any convenient boundary compatible with the type.

'type' may be any sized type.

Semantics:

Memory is allocated; a pointer is returned. The operation is undefined if there is insufficient stack

space for the allocation. 'alloca'd memory is automatically released when the function returns.

The 'alloca' instruction is commonly used to represent automatic variables that must have an

address available. When the function returns (either with the ret or unwind instructions), the

memory is reclaimed. Allocating zero bytes is legal, but the result is undefined.

Example:

%ptr = alloca i32 ; yields {i32*}:ptr
%ptr = alloca i32, i32 4 ; yields {i32*}:ptr
%ptr = alloca i32, i32 4, align 1024 ; yields {i32*}:ptr
%ptr = alloca i32, align 1024 ; yields {i32*}:ptr

'load' Instruction

Syntax:

<result> = load [volatile] <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>]
<result> = load atomic [volatile] <ty>* <pointer> [singlethread] <ordering>, align <alignment>
!<index> = !{ i32 1 }

Overview:

The 'load' instruction is used to read from memory.

Memory Access and Addressing Operations

91

Arguments:

The argument to the 'load' instruction specifies the memory address from which to load. The

pointer must point to a first class type. If the load is marked as volatile, then the optimizer is

not allowed to modify the number or order of execution of this load with other volatile

operations.

If the load is marked as atomic, it takes an extra ordering and optional singlethread argument.

The release and acq_rel orderings are not valid on load instructions. Atomic loads produce

defined results when they may see multiple atomic stores. The type of the pointee must be an

integer type whose bit width is a power of two greater than or equal to eight and less than or

equal to a target-specific size limit. align must be explicitly specified on atomic loads, and the

load has undefined behavior if the alignment is not set to a value which is at least the size in bytes

of the pointee. !nontemporal does not have any defined semantics for atomic loads.

The optional constant align argument specifies the alignment of the operation (that is, the

alignment of the memory address). A value of 0 or an omitted align argument means that the

operation has the preferential alignment for the target. It is the responsibility of the code emitter

to ensure that the alignment information is correct. Overestimating the alignment results in

undefined behavior. Underestimating the alignment may produce less efficient code. An

alignment of 1 is always safe.

The optional !nontemporal metadata must reference a single metatadata name <index>

corresponding to a metadata node with one i32 entry of value 1. The existence of the

!nontemporal metatadata on the instruction tells the optimizer and code generator that this load

is not expected to be reused in the cache. The code generator may select special instructions to

save cache bandwidth, such as the MOVNT instruction on x86.

Semantics:

The location of memory pointed to is loaded. If the value being loaded is of scalar type then the

number of bytes read does not exceed the minimum number of bytes needed to hold all bits of

the type. For example, loading an i24 reads at most three bytes. When loading a value of a type

like i20 with a size that is not an integral number of bytes, the result is undefined if the value was

not originally written using a store of the same type.

Chapter IX. Instruction Reference

92

Examples:

%ptr = alloca i32 ; yields {i32*}:ptr
store i32 3, i32* %ptr ; yields {void}
%val = load i32* %ptr ; yields {i32}:val = i32 3

'store' Instruction

Syntax:

store [volatile] <ty> <value>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>] ; yields {void}
store atomic [volatile] <ty> <value>, <ty>* <pointer> [singlethread] <ordering>, align <alignment> ; yields {void}

Overview:

The 'store' instruction is used to write to memory.

Arguments:

There are two arguments to the 'store' instruction: a value to store and an address at which to

store it. The type of the '<pointer>' operand must be a pointer to the first class type of the

'<value>' operand. If the store is marked as volatile, then the optimizer is not allowed to

modify the number or order of execution of this store with other volatile operations.

If the store is marked as atomic, it takes an extra ordering and optional singlethread argument.

The acquire and acq_rel orderings aren't valid on store instructions. Atomic loads produce

defined results when they may see multiple atomic stores. The type of the pointee must be an

integer type whose bit width is a power of two greater than or equal to eight and less than or

equal to a target-specific size limit. align must be explicitly specified on atomic stores, and the

store has undefined behavior if the alignment is not set to a value which is at least the size in

bytes of the pointee. !nontemporal does not have any defined semantics for atomic stores.

The optional constant "align" argument specifies the alignment of the operation (that is, the

alignment of the memory address). A value of 0 or an omitted "align" argument means that the

operation has the preferential alignment for the target. It is the responsibility of the code emitter

to ensure that the alignment information is correct. Overestimating the alignment results in an

undefined behavior. Underestimating the alignment may produce less efficient code. An

alignment of 1 is always safe.

Memory Access and Addressing Operations

93

The optional !nontemporal metadata must reference a single metatadata name <index>

corresponding to a metadata node with one i32 entry of value 1. The existence of the

!nontemporal metatadata on the instruction tells the optimizer and code generator that this load

is not expected to be reused in the cache. The code generator may select special instructions to

save cache bandwidth, such as the MOVNT instruction on x86.

Semantics:

The contents of memory are updated to contain '<value>' at the location specified by the

'<pointer>' operand. If '<value>' is of scalar type then the number of bytes written does not

exceed the minimum number of bytes needed to hold all bits of the type. For example, storing an

i24 writes at most three bytes. When writing a value of a type like i20 with a size that is not an

integral number of bytes, it is unspecified what happens to the extra bits that do not belong to

the type, but they will typically be overwritten.

Example:

%ptr = alloca i32 ; yields {i32*}:ptr
store i32 3, i32* %ptr ; yields {void}
%val = load i32* %ptr ; yields {i32}:val = i32 3

'fence' Instruction

Syntax:

fence [singlethread] <ordering> ; yields {void}

Overview:

The 'fence' instruction is used to introduce happens-before edges between operations.

Arguments:

'fence' instructions take an ordering argument which defines what synchronizes-with edges they

add. They can only be given acquire, release, acq_rel, and seq_cst orderings.

Chapter IX. Instruction Reference

94

Semantics:

A fence A which has (at least) release ordering semantics synchronizes with a fence B with (at

least) acquire ordering semantics if and only if there exist atomic operations X and Y, both

operating on some atomic object M, such that A is sequenced before X, X modifies M (either

directly or through some side effect of a sequence headed by X), Y is sequenced before B, and Y

observes M. This provides a happens-before dependency between A and B. Rather than an explicit

fence, one (but not both) of the atomic operations X or Y might provide a release or acquire

(resp.) ordering constraint and still synchronize-with the explicit fence and establish the happens-

before edge.

A fence which has seq_cst ordering, in addition to having both acquire and release semantics

specified above, participates in the global program order of other seq_cst operations and/or

fences.

The optional "singlethread" argument specifies that the fence only synchronizes with other

fences in the same thread. (This is useful for interacting with signal handlers.)

Example:

fence acquire ; yields {void}
fence singlethread seq_cst ; yields {void}

'cmpxchg' Instruction

Syntax:

cmpxchg [volatile] <ty>* <pointer>, <ty> <cmp>, <ty> <new> [singlethread] <ordering> ; yields {ty}

Overview:

The 'cmpxchg' instruction is used to atomically modify memory. It loads a value in memory and

compares it to a given value. If they are equal, it stores a new value into the memory.

Arguments:

There are three arguments to the 'cmpxchg' instruction: an address to operate on, a value to

compare to the value currently be at that address, and a new value to place at that address if the

compared values are equal. The type of '<cmp>' must be an integer type whose bit width is a

Memory Access and Addressing Operations

95

power of two greater than or equal to eight and less than or equal to a target-specific size limit.

'<cmp>' and '<new>' must have the same type, and the type of '<pointer>' must be a pointer to that

type. If the cmpxchg is marked as volatile, then the optimizer is not allowed to modify the

number or order of execution of this cmpxchg with other volatile operations.

The ordering argument specifies how this cmpxchg synchronizes with other atomic operations.

The optional "singlethread" argument declares that the cmpxchg is only atomic with respect to

code (usually signal handlers) running in the same thread as the cmpxchg. Otherwise the cmpxchg

is atomic with respect to all other code in the system.

The pointer passed into cmpxchg must have alignment greater than or equal to the size in

memory of the operand.

Semantics:

The contents of memory at the location specified by the '<pointer>' operand is read and

compared to '<cmp>'; if the read value is the equal, '<new>' is written. The original value at the

location is returned.

A successful cmpxchg is a read-modify-write instruction for the purpose of identifying release

sequences. A failed cmpxchg is equivalent to an atomic load with an ordering parameter

determined by dropping any release part of the cmpxchg's ordering.

Example:

entry:
%orig = atomic load i32* %ptr unordered ; yields {i32}
br label %loop

loop:
%cmp = phi i32 [%orig, %entry], [%old, %loop]
%squared = mul i32 %cmp, %cmp
%old = cmpxchg i32* %ptr, i32 %cmp, i32 %squared ; yields {i32}
%success = icmp eq i32 %cmp, %old
br i1 %success, label %done, label %loop

done:
...

Chapter IX. Instruction Reference

96

'atomicrmw' Instruction

Syntax:

atomicrmw [volatile] <operation> <ty>* <pointer>, <ty> <value> [singlethread] <ordering> ; yields {ty}

Overview:

The 'atomicrmw' instruction is used to atomically modify memory.

Arguments:

There are three arguments to the 'atomicrmw' instruction: an operation to apply, an address

whose value to modify, an argument to the operation. The operation must be one of the following

keywords:

• xchg

• add

• sub

• and

• nand

• or

• xor

• max

• min

• umax

• umin

The type of '<value>' must be an integer type whose bit width is a power of two greater than or

equal to eight and less than or equal to a target-specific size limit. The type of the '<pointer>'

operand must be a pointer to that type. If the atomicrmw is marked as volatile, then the

optimizer is not allowed to modify the number or order of execution of this atomicrmw with other

volatile operations.

Memory Access and Addressing Operations

97

Semantics:

The contents of memory at the location specified by the '<pointer>' operand are atomically read,

modified, and written back. The original value at the location is returned. The modification is

specified by the operation argument:

• xchg: *ptr = val

• add: *ptr = *ptr + val

• sub: *ptr = *ptr - val

• and: *ptr = *ptr & val

• nand: *ptr = ~(*ptr & val)

• or: *ptr = *ptr | val

• xor: *ptr = *ptr ^ val

• max: *ptr = *ptr > val ? *ptr : val (using a signed comparison)

• min: *ptr = *ptr < val ? *ptr : val (using a signed comparison)

• umax: *ptr = *ptr > val ? *ptr : val (using an unsigned comparison)

• umin: *ptr = *ptr < val ? *ptr : val (using an unsigned comparison)

Example:

%old = atomicrmw add i32* %ptr, i32 1 acquire ; yields {i32}

'getelementptr' Instruction

Syntax:

<result> = getelementptr <pty>* <ptrval>{, <ty> <idx>}*
<result> = getelementptr inbounds <pty>* <ptrval>{, <ty> <idx>}*

Overview:

The 'getelementptr' instruction is used to get the address of a subelement of an aggregate data

structure. It performs address calculation only and does not access memory.

Arguments:

The first argument is always a pointer, and forms the basis of the calculation. The remaining

arguments are indices that indicate which of the elements of the aggregate object are indexed.

Chapter IX. Instruction Reference

98

The interpretation of each index is dependent on the type being indexed into. The first index

always indexes the pointer value given as the first argument, the second index indexes a value of

the type pointed to (not necessarily the value directly pointed to, since the first index can be non-

zero), etc. The first type indexed into must be a pointer value, subsequent types can be arrays,

vectors, and structs. Note that subsequent types being indexed into can never be pointers, since

that would require loading the pointer before continuing calculation.

The type of each index argument depends on the type it is indexing into. When indexing into a

(optionally packed) structure, only i32 integer constants are allowed. When indexing into an

array, pointer or vector, integers of any width are allowed, and they are not required to be

constant. These integers are treated as signed values where relevant.

For example, let's consider a C code fragment and how it gets compiled to LLVM:

struct RT {
char A;
int B[10][20];
char C;

};
struct ST {

int X;
double Y;
struct RT Z;

};

int *foo(struct ST *s) {
return &s[1].Z.B[5][13];

}

The LLVM code generated by the GCC frontend is:

%RT = type { i8 , [10 x [20 x i32]], i8 }
%ST = type { i32, double, %RT }

define i32* @foo(%ST* %s) {
entry:

%reg = getelementptr %ST* %s, i32 1, i32 2, i32 1, i32 5, i32 13
ret i32* %reg

}

Memory Access and Addressing Operations

99

Semantics:

In the example above, the first index is indexing into the '%ST*' type, which is a pointer, yielding

a '%ST' = '{ i32, double, %RT }' type, a structure. The second index indexes into the third

element of the structure, yielding a '%RT' = '{ i8 , [10 x [20 x i32]], i8 }' type, another

structure. The third index indexes into the second element of the structure, yielding a '[10 x [20

x i32]]' type, an array. The two dimensions of the array are subscripted into, yielding an 'i32'

type. The 'getelementptr' instruction returns a pointer to this element, thus computing a value

of 'i32*' type.

Note that it is perfectly legal to index partially through a structure, returning a pointer to an

inner element. Because of this, the LLVM code for the given testcase is equivalent to:

define i32* @foo(%ST* %s) {
%t1 = getelementptr %ST* %s, i32 1 ; yields %ST*:%t1
%t2 = getelementptr %ST* %t1, i32 0, i32 2 ; yields %RT*:%t2
%t3 = getelementptr %RT* %t2, i32 0, i32 1 ; yields [10 x [20 x i32]]*:%t3
%t4 = getelementptr [10 x [20 x i32]]* %t3, i32 0, i32 5 ; yields [20 x i32]*:%t4
%t5 = getelementptr [20 x i32]* %t4, i32 0, i32 13 ; yields i32*:%t5
ret i32* %t5

}

If the inbounds keyword is present, the result value of the getelementptr is a trap value if the

base pointer is not an in bounds address of an allocated object, or if any of the addresses that

would be formed by successive addition of the offsets implied by the indices to the base address

with infinitely precise signed arithmetic are not an in bounds address of that allocated object. The

in bounds addresses for an allocated object are all the addresses that point into the object, plus the

address one byte past the end.

If the inbounds keyword is not present, the offsets are added to the base address with silently-

wrapping two's complement arithmetic. If the offsets have a different width from the pointer,

they are sign-extended or truncated to the width of the pointer. The result value of the

getelementptr may be outside the object pointed to by the base pointer. The result value may

not necessarily be used to access memory though, even if it happens to point into allocated

storage. See the Pointer Aliasing Rules section for more information.

The getelementptr instruction is often confusing. For some more insight into how it works, see

the getelementptr FAQ.

Chapter IX. Instruction Reference

100

http://www.llvm.org/docs/GetElementPtr.html

Example:

; yields [12 x i8]*:aptr
%aptr = getelementptr {i32, [12 x i8]}* %saptr, i64 0, i32 1
; yields i8*:vptr
%vptr = getelementptr {i32, <2 x i8>}* %svptr, i64 0, i32 1, i32 1
; yields i8*:eptr
%eptr = getelementptr [12 x i8]* %aptr, i64 0, i32 1
; yields i32*:iptr
%iptr = getelementptr [10 x i32]* @arr, i16 0, i16 0

Conversion Operations

The instructions in this category are the conversion instructions (casting) which all take a single

operand and a type. They perform various bit conversions on the operand.

'trunc .. to' Instruction

Syntax:

<result> = trunc <ty> <value> to <ty2> ; yields ty2

Overview:

The 'trunc' instruction truncates its operand to the type ty2.

Arguments:

The 'trunc' instruction takes a value to trunc, and a type to trunc it to. Both types must be of

integer types, or vectors of the same number of integers. The bit size of the value must be larger

than the bit size of the destination type, ty2. Equal sized types are not allowed.

Semantics:

The 'trunc' instruction truncates the high order bits in value and converts the remaining bits to

ty2. Since the source size must be larger than the destination size, trunc cannot be a no-op cast. It

will always truncate bits.

Conversion Operations

101

Example:

%X = trunc i32 257 to i8 ; yields i8:1
%Y = trunc i32 123 to i1 ; yields i1:true
%Z = trunc i32 122 to i1 ; yields i1:false
%W = trunc <2 x i16> <i16 8, i16 7> to <2 x i8> ; yields <i8 8, i8 7>

'zext .. to' Instruction

Syntax:

<result> = zext <ty> <value> to <ty2> ; yields ty2

Overview:

The 'zext' instruction zero extends its operand to type ty2.

Arguments:

The 'zext' instruction takes a value to cast, and a type to cast it to. Both types must be of integer

types, or vectors of the same number of integers. The bit size of the value must be smaller than

the bit size of the destination type, ty2.

Semantics:

The zext fills the high order bits of the value with zero bits until it reaches the size of the

destination type, ty2.

When zero extending from i1, the result will always be either 0 or 1.

Example:

%X = zext i32 257 to i64 ; yields i64:257
%Y = zext i1 true to i32 ; yields i32:1
%Z = zext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>

'sext .. to' Instruction

Syntax:

<result> = sext <ty> <value> to <ty2> ; yields ty2

Chapter IX. Instruction Reference

102

Overview:

The 'sext' sign extends value to the type ty2.

Arguments:

The 'sext' instruction takes a value to cast, and a type to cast it to. Both types must be of integer

types, or vectors of the same number of integers. The bit size of the value must be smaller than

the bit size of the destination type, ty2.

Semantics:

The 'sext' instruction performs a sign extension by copying the sign bit (highest order bit) of the

value until it reaches the bit size of the type ty2.

When sign extending from i1, the extension always results in -1 or 0.

Example:

%X = sext i8 -1 to i16 ; yields i16 :65535
%Y = sext i1 true to i32 ; yields i32:-1
%Z = sext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>

'fptrunc .. to' Instruction

Syntax:

<result> = fptrunc <ty> <value> to <ty2> ; yields ty2

Overview:

The 'fptrunc' instruction truncates value to type ty2.

Arguments:

The 'fptrunc' instruction takes a floating point value to cast and a floating point type to cast it to.

The size of value must be larger than the size of ty2. This implies that fptrunc cannot be used to

make a no-op cast.

Conversion Operations

103

Semantics:

The 'fptrunc' instruction truncates a value from a larger floating point type to a smaller floating

point type. If the value cannot fit within the destination type, ty2, then the results are undefined.

Example:

%X = fptrunc double 123.0 to float ; yields float:123.0
%Y = fptrunc double 1.0E+300 to float ; yields undefined

'fpext .. to' Instruction

Syntax:

<result> = fpext <ty> <value> to <ty2> ; yields ty2

Overview:

The 'fpext' extends a floating point value to a larger floating point value.

Arguments:

The 'fpext' instruction takes a floating point value to cast, and a floating point type to cast it to.

The source type must be smaller than the destination type.

Semantics:

The 'fpext' instruction extends the value from a smaller floating point type to a larger floating

point type. The fpext cannot be used to make a no-op cast because it always changes bits. Use

bitcast to make a no-op cast for a floating point cast.

Example:

%X = fpext float 3.125 to double ; yields double:3.125000e+00
%Y = fpext double %X to fp128 ; yields fp128:0xL00000000000000004000900000000000

Chapter IX. Instruction Reference

104

'fptoui .. to' Instruction

Syntax:

<result> = fptoui <ty> <value> to <ty2> ; yields ty2

Overview:

The 'fptoui' converts a floating point value to its unsigned integer equivalent of type ty2.

Arguments:

The 'fptoui' instruction takes a value to cast, which must be a scalar or vector floating point

value, and a type to cast it to ty2, which must be an integer type. If ty is a vector floating point

type, ty2 must be a vector integer type with the same number of elements as ty

Semantics:

The 'fptoui' instruction converts its floating point operand into the nearest (rounding towards

zero) unsigned integer value. If the value cannot fit in ty2, the results are undefined.

Example:

%X = fptoui double 123.0 to i32 ; yields i32:123
%Y = fptoui float 1.0E+300 to i1 ; yields undefined:1
%Z = fptoui float 1.04E+17 to i8 ; yields undefined:1

'fptosi .. to' Instruction

Syntax:

<result> = fptosi <ty> <value> to <ty2> ; yields ty2

Overview:

The 'fptosi' instruction converts floating point value to type ty2.

Conversion Operations

105

Arguments:

The 'fptosi' instruction takes a value to cast, which must be a scalar or vector floating point

value, and a type to cast it to ty2, which must be an integer type. If ty is a vector floating point

type, ty2 must be a vector integer type with the same number of elements as ty

Semantics:

The 'fptosi' instruction converts its floating point operand into the nearest (rounding towards

zero) signed integer value. If the value cannot fit in ty2, the results are undefined.

Example:

%X = fptosi double -123.0 to i32 ; yields i32:-123
%Y = fptosi float 1.0E-247 to i1 ; yields undefined:1
%Z = fptosi float 1.04E+17 to i8 ; yields undefined:1

'uitofp .. to' Instruction

Syntax:

<result> = uitofp <ty> <value> to <ty2> ; yields ty2

Overview:

The 'uitofp' instruction regards value as an unsigned integer and converts that value to the ty2

type.

Arguments:

The 'uitofp' instruction takes a value to cast, which must be a scalar or vector integer value, and

a type to cast it to ty2, which must be an floating point type. If ty is a vector integer type, ty2

must be a vector floating point type with the same number of elements as ty

Semantics:

The 'uitofp' instruction interprets its operand as an unsigned integer quantity and converts it to

the corresponding floating point value. If the value cannot fit in the floating point value, the

results are undefined.

Chapter IX. Instruction Reference

106

Example:

%X = uitofp i32 257 to float ; yields float:257.0
%Y = uitofp i8 -1 to double ; yields double:255.0

'sitofp .. to' Instruction

Syntax:

<result> = sitofp <ty> <value> to <ty2> ; yields ty2

Overview:

The 'sitofp' instruction regards value as a signed integer and converts that value to the ty2

type.

Arguments:

The 'sitofp' instruction takes a value to cast, which must be a scalar or vector integer value, and

a type to cast it to ty2, which must be an floating point type. If ty is a vector integer type, ty2

must be a vector floating point type with the same number of elements as ty

Semantics:

The 'sitofp' instruction interprets its operand as a signed integer quantity and converts it to the

corresponding floating point value. If the value cannot fit in the floating point value, the results

are undefined.

Example:

%X = sitofp i32 257 to float ; yields float:257.0
%Y = sitofp i8 -1 to double ; yields double:-1.0

'ptrtoint .. to' Instruction

Syntax:

<result> = ptrtoint <ty> <value> to <ty2> ; yields ty2

Conversion Operations

107

Overview:

The 'ptrtoint' instruction converts the pointer value to the integer type ty2.

Arguments:

The 'ptrtoint' instruction takes a value to cast, which must be a pointer value, and a type to cast

it to ty2, which must be an integer type.

Semantics:

The 'ptrtoint' instruction converts value to integer type ty2 by interpreting the pointer value

as an integer and either truncating or zero extending that value to the size of the integer type. If

value is smaller than ty2 then a zero extension is done. If value is larger than ty2 then a

truncation is done. If they are the same size, then nothing is done (no-op cast) other than a type

change.

Example:

%X = ptrtoint i32* %X to i8 ; yields truncation on 32-bit architecture
%Y = ptrtoint i32* %x to i64 ; yields zero extension on 32-bit architecture

'inttoptr .. to' Instruction

Syntax:

<result> = inttoptr <ty> <value> to <ty2> ; yields ty2

Overview:

The 'inttoptr' instruction converts an integer value to a pointer type, ty2.

Arguments:

The 'inttoptr' instruction takes an integer value to cast, and a type to cast it to, which must be a

pointer type.

Chapter IX. Instruction Reference

108

Semantics:

The 'inttoptr' instruction converts value to type ty2 by applying either a zero extension or a

truncation depending on the size of the integer value. If value is larger than the size of a pointer

then a truncation is done. If value is smaller than the size of a pointer then a zero extension is

done. If they are the same size, nothing is done (no-op cast).

Example:

%X = inttoptr i32 255 to i32* ; yields zero extension on 64-bit architecture
%Y = inttoptr i32 255 to i32* ; yields no-op on 32-bit architecture
%Z = inttoptr i64 0 to i32* ; yields truncation on 32-bit architecture

'bitcast .. to' Instruction

Syntax:

<result> = bitcast <ty> <value> to <ty2> ; yields ty2

Overview:

The 'bitcast' instruction converts value to type ty2 without changing any bits.

Arguments:

The 'bitcast' instruction takes a value to cast, which must be a non-aggregate first class value,

and a type to cast it to, which must also be a non-aggregate first class type. The bit sizes of value

and the destination type, ty2, must be identical. If the source type is a pointer, the destination

type must also be a pointer. This instruction supports bitwise conversion of vectors to integers

and to vectors of other types (as long as they have the same size).

Semantics:

The 'bitcast' instruction converts value to type ty2. It is always a no-op cast because no bits

change with this conversion. The conversion is done as if the value had been stored to memory

and read back as type ty2. Pointer types may only be converted to other pointer types with this

instruction. To convert pointers to other types, use the inttoptr or ptrtoint instructions first.

Conversion Operations

109

Example:

%X = bitcast i8 255 to i8 ; yields i8 :-1
%Y = bitcast i32* %x to sint* ; yields sint*:%x
%Z = bitcast <2 x int> %V to i64; ; yields i64: %V

Other Operations

The instructions in this category are the "miscellaneous" instructions, which defy better

classification.

'icmp' Instruction

Syntax:

<result> = icmp <cond> <ty> <op1>, <op2> ; yields {i1} or {<N x i1>}:result

Overview:

The 'icmp' instruction returns a boolean value or a vector of boolean values based on comparison

of its two integer, integer vector, or pointer operands.

Arguments:

The 'icmp' instruction takes three operands. The first operand is the condition code indicating

the kind of comparison to perform. It is not a value, just a keyword. The possible condition code

are:

1. eq: equal

2. ne: not equal

3. ugt: unsigned greater than

4. uge: unsigned greater or equal

5. ult: unsigned less than

6. ule: unsigned less or equal

7. sgt: signed greater than

8. sge: signed greater or equal

9. slt: signed less than

10. sle: signed less or equal

Chapter IX. Instruction Reference

110

The remaining two arguments must be integer or pointer or integer vector typed. They must also

be identical types.

Semantics:

The 'icmp' compares op1 and op2 according to the condition code given as cond. The comparison

performed always yields either an i1 or vector of i1 result, as follows:

1. eq: yields true if the operands are equal, false otherwise. No sign interpretation is

necessary or performed.

2. ne: yields true if the operands are unequal, false otherwise. No sign interpretation is

necessary or performed.

3. ugt: interprets the operands as unsigned values and yields true if op1 is greater than op2.

4. uge: interprets the operands as unsigned values and yields true if op1 is greater than or

equal to op2.

5. ult: interprets the operands as unsigned values and yields true if op1 is less than op2.

6. ule: interprets the operands as unsigned values and yields true if op1 is less than or equal

to op2.

7. sgt: interprets the operands as signed values and yields true if op1 is greater than op2.

8. sge: interprets the operands as signed values and yields true if op1 is greater than or

equal to op2.

9. slt: interprets the operands as signed values and yields true if op1 is less than op2.

10. sle: interprets the operands as signed values and yields true if op1 is less than or equal to

op2.

If the operands are pointer typed, the pointer values are compared as if they were integers.

If the operands are integer vectors, then they are compared element by element. The result is an

i1 vector with the same number of elements as the values being compared. Otherwise, the result

is an i1.

Example:

<result> = icmp eq i32 4, 5 ; yields: result=false
<result> = icmp ne float* %X, %X ; yields: result=false
<result> = icmp ult i16 4, 5 ; yields: result=true
<result> = icmp sgt i16 4, 5 ; yields: result=false

Other Operations

111

<result> = icmp ule i16 -4, 5 ; yields: result=false
<result> = icmp sge i16 4, 5 ; yields: result=false

Note that the code generator does not yet support vector types with the icmp instruction.

'fcmp' Instruction

Syntax:

<result> = fcmp <cond> <ty> <op1>, <op2> ; yields {i1} or {<N x i1>}:result

Overview:

The 'fcmp' instruction returns a boolean value or vector of boolean values based on comparison of

its operands.

If the operands are floating point scalars, then the result type is a boolean (i1).

If the operands are floating point vectors, then the result type is a vector of boolean with the

same number of elements as the operands being compared.

Arguments:

The 'fcmp' instruction takes three operands. The first operand is the condition code indicating

the kind of comparison to perform. It is not a value, just a keyword. The possible condition code

are:

1. false: no comparison, always returns false

2. oeq: ordered and equal

3. ogt: ordered and greater than

4. oge: ordered and greater than or equal

5. olt: ordered and less than

6. ole: ordered and less than or equal

7. one: ordered and not equal

8. ord: ordered (no nans)

9. ueq: unordered or equal

10. ugt: unordered or greater than

11. uge: unordered or greater than or equal

Chapter IX. Instruction Reference

112

12. ult: unordered or less than

13. ule: unordered or less than or equal

14. une: unordered or not equal

15. uno: unordered (either nans)

16. true: no comparison, always returns true

Ordered means that neither operand is a QNAN while unordered means that either operand may be

a QNAN.

Each of val1 and val2 arguments must be either a floating point type or a vector of floating point

type. They must have identical types.

Semantics:

The 'fcmp' instruction compares op1 and op2 according to the condition code given as cond. If the

operands are vectors, then the vectors are compared element by element. Each comparison

performed always yields an i1 result, as follows:

1. false: always yields false, regardless of operands.

2. oeq: yields true if both operands are not a QNAN and op1 is equal to op2.

3. ogt: yields true if both operands are not a QNAN and op1 is greater than op2.

4. oge: yields true if both operands are not a QNAN and op1 is greater than or equal to op2.

5. olt: yields true if both operands are not a QNAN and op1 is less than op2.

6. ole: yields true if both operands are not a QNAN and op1 is less than or equal to op2.

7. one: yields true if both operands are not a QNAN and op1 is not equal to op2.

8. ord: yields true if both operands are not a QNAN.

9. ueq: yields true if either operand is a QNAN or op1 is equal to op2.

10. ugt: yields true if either operand is a QNAN or op1 is greater than op2.

11. uge: yields true if either operand is a QNAN or op1 is greater than or equal to op2.

12. ult: yields true if either operand is a QNAN or op1 is less than op2.

13. ule: yields true if either operand is a QNAN or op1 is less than or equal to op2.

14. une: yields true if either operand is a QNAN or op1 is not equal to op2.

15. uno: yields true if either operand is a QNAN.

16. true: always yields true, regardless of operands.

Other Operations

113

Example:

<result> = fcmp oeq float 4.0, 5.0 ; yields: result=false
<result> = fcmp one float 4.0, 5.0 ; yields: result=true
<result> = fcmp olt float 4.0, 5.0 ; yields: result=true
<result> = fcmp ueq double 1.0, 2.0 ; yields: result=false

Note that the code generator does not yet support vector types with the fcmp instruction.

'phi' Instruction

Syntax:

<result> = phi <ty> [<val0>, <label0>], ...

Overview:

The 'phi' instruction is used to implement the φ node in the SSA graph representing the function.

Arguments:

The type of the incoming values is specified with the first type field. After this, the 'phi'

instruction takes a list of pairs as arguments, with one pair for each predecessor basic block of the

current block. Only values of first class type may be used as the value arguments to the PHI node.

Only labels may be used as the label arguments.

There must be no non-phi instructions between the start of a basic block and the PHI

instructions: i.e. PHI instructions must be first in a basic block.

For the purposes of the SSA form, the use of each incoming value is deemed to occur on the edge

from the corresponding predecessor block to the current block (but after any definition of an

'invoke' instruction's return value on the same edge).

Semantics:

At runtime, the 'phi' instruction logically takes on the value specified by the pair corresponding

to the predecessor basic block that executed just prior to the current block.

Chapter IX. Instruction Reference

114

Example:

Loop: ; Infinite loop that counts from 0 on up...
%indvar = phi i32 [0, %LoopHeader], [%nextindvar, %Loop]
%nextindvar = add i32 %indvar, 1
br label %Loop

'select' Instruction

Syntax:

<result> = select selty <cond>, <ty> <val1>, <ty> <val2> ; yields ty

selty is either i1 or {<N x i1>}

Overview:

The 'select' instruction is used to choose one value based on a condition, without branching.

Arguments:

The 'select' instruction requires an 'i1' value or a vector of 'i1' values indicating the condition,

and two values of the same first class type. If the val1/val2 are vectors and the condition is a

scalar, then entire vectors are selected, not individual elements.

Semantics:

If the condition is an i1 and it evaluates to 1, the instruction returns the first value argument;

otherwise, it returns the second value argument.

If the condition is a vector of i1, then the value arguments must be vectors of the same size, and

the selection is done element by element.

Example:

%X = select i1 true, i8 17, i8 42 ; yields i8:17

Note that the code generator does not yet support conditions with vector type.

Other Operations

115

'call' Instruction

Syntax:

<result> = [tail] call [cconv] [ret attrs] <ty> [<fnty>*] <fnptrval>(<function args>) [fn attrs]

Overview:

The 'call' instruction represents a simple function call.

Arguments:

This instruction requires several arguments:

1. The optional "tail" marker indicates that the callee function does not access any allocas

or varargs in the caller. Note that calls may be marked "tail" even if they do not occur

before a ret instruction. If the "tail" marker is present, the function call is eligible for tail

call optimization, but might not in fact be optimized into a jump. The code generator may

optimize calls marked "tail" with either 1) automatic sibling call optimization when the

caller and callee have matching signatures, or 2) forced tail call optimization when the

following extra requirements are met:

◦ Caller and callee both have the calling convention fastcc.

◦ The call is in tail position (ret immediately follows call and ret uses value of call

or is void).

◦ Option -tailcallopt is enabled, or llvm::GuaranteedTailCallOpt is true.

◦ Platform specific constraints are met.

2. The optional "cconv" marker indicates which calling convention the call should use. If

none is specified, the call defaults to using C calling conventions. The calling convention

of the call must match the calling convention of the target function, or else the behavior

is undefined.

3. The optional Parameter Attributes list for return values. Only 'zeroext', 'signext', and

'inreg' attributes are valid here.

4. 'ty': the type of the call instruction itself which is also the type of the return value.

Functions that return no value are marked void.

5. 'fnty': shall be the signature of the pointer to function value being invoked. The

argument types must match the types implied by this signature. This type can be omitted

Chapter IX. Instruction Reference

116

http://www.llvm.org/docs/CodeGenerator.html#tailcallopt
http://www.llvm.org/docs/CodeGenerator.html#sibcallopt
http://www.llvm.org/docs/CodeGenerator.html#tailcallopt

if the function is not varargs and if the function type does not return a pointer to a

function.

6. 'fnptrval': An LLVM value containing a pointer to a function to be invoked. In most

cases, this is a direct function invocation, but indirect calls are just as possible, calling an

arbitrary pointer to function value.

7. 'function args': argument list whose types match the function signature argument

types and parameter attributes. All arguments must be of first class type. If the function

signature indicates the function accepts a variable number of arguments, the extra

arguments can be specified.

8. The optional function attributes list. Only 'noreturn', 'nounwind', 'readonly' and

'readnone' attributes are valid here.

Semantics:

The 'call' instruction is used to cause control flow to transfer to a specified function, with its

incoming arguments bound to the specified values. Upon a 'ret' instruction in the called

function, control flow continues with the instruction after the function call, and the return value

of the function is bound to the result argument.

Example:

%retval = call i32 @test(i32 %argc)
call i32 (i8*, ...)* @printf(i8* %msg, i32 12, i8 42) ; yields i32
%X = tail call i32 @foo() ; yields i32
%Y = tail call fastcc i32 @foo() ; yields i32
call void %foo(i8 97 signext)

%struct.A = type { i32, i8 }
%r = call %struct.A @foo() ; yields { 32, i8 }
%gr = extractvalue %struct.A %r, 0 ; yields i32
%gr1 = extractvalue %struct.A %r, 1 ; yields i8
%Z = call void @foo() noreturn ; indicates that %foo never returns normally
%ZZ = call zeroext i32 @bar() ; Return value is %zero extended

llvm treats calls to some functions with names and arguments that match the standard C99

library as being the C99 library functions, and may perform optimizations or generate code for

them under that assumption. This is something we'd like to change in the future to provide better

support for freestanding environments and non-C-based languages.

Other Operations

117

'va_arg' Instruction

Syntax:

<resultval> = va_arg <va_list*> <arglist>, <argty>

Overview:

The 'va_arg' instruction is used to access arguments passed through the "variable argument"

area of a function call. It is used to implement the va_arg macro in C.

Arguments:

This instruction takes a va_list* value and the type of the argument. It returns a value of the

specified argument type and increments the va_list to point to the next argument. The actual

type of va_list is target specific.

Semantics:

The 'va_arg' instruction loads an argument of the specified type from the specified va_list and

causes the va_list to point to the next argument. For more information, see the variable

argument handling Intrinsic Functions.

It is legal for this instruction to be called in a function which does not take a variable number of

arguments, for example, the vfprintf function.

va_arg is an LLVM instruction instead of an intrinsic function because it takes a type as an

argument.

Example:

See the variable argument processing section.

Note that the code generator does not yet fully support va_arg on many targets. Also, it does not

currently support va_arg with aggregate types on any target.

Chapter IX. Instruction Reference

118

'landingpad' Instruction

Syntax:

<resultval> = landingpad <somety> personality <type> <pers_fn> <clause>+
<resultval> = landingpad <somety> personality <type> <pers_fn> cleanup <clause>*

<clause> := catch <type> <value>
<clause> := filter <array constant type> <array constant>

Overview:

The 'landingpad' instruction is used by LLVM's exception handling system to specify that a basic

block is a landing pad — one where the exception lands, and corresponds to the code found in the

catch portion of a try/catch sequence. It defines values supplied by the personality function

(pers_fn) upon re-entry to the function. The resultval has the type somety.

Arguments:

This instruction takes a pers_fn value. This is the personality function associated with the

unwinding mechanism. The optional cleanup flag indicates that the landing pad block is a

cleanup.

A clause begins with the clause type — catch or filter — and contains the global variable

representing the "type" that may be caught or filtered respectively. Unlike the catch clause, the

filter clause takes an array constant as its argument. Use "[0 x i8**] undef" for a filter which

cannot throw. The 'landingpad' instruction must contain at least one clause or the cleanup flag.

Semantics:

The 'landingpad' instruction defines the values which are set by the personality function

(pers_fn) upon re-entry to the function, and therefore the "result type" of the landingpad

instruction. As with calling conventions, how the personality function results are represented in

LLVM IR is target specific.

The clauses are applied in order from top to bottom. If two landingpad instructions are merged

together through inlining, the clauses from the calling function are appended to the list of

clauses.

Other Operations

119

http://www.llvm.org/docs/ExceptionHandling.html#overview

The landingpad instruction has several restrictions:

• A landing pad block is a basic block which is the unwind destination of an 'invoke'

instruction.

• A landing pad block must have a 'landingpad' instruction as its first non-PHI instruction.

• There can be only one 'landingpad' instruction within the landing pad block.

• A basic block that is not a landing pad block may not include a 'landingpad' instruction.

• All 'landingpad' instructions in a function must have the same personality function.

Example:

;; A landing pad which can catch an integer.
%res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0

catch i8** @_ZTIi
;; A landing pad that is a cleanup.
%res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0

cleanup
;; A landing pad which can catch an integer and can only throw a double.
%res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0

catch i8** @_ZTIi
filter [1 x i8**] [@_ZTId]

Chapter IX. Instruction Reference

120

Intrinsic Functions

LLVM supports the notion of an "intrinsic function". These functions have well known names and

semantics and are required to follow certain restrictions. Overall, these intrinsics represent an

extension mechanism for the LLVM language that does not require changing all of the

transformations in LLVM when adding to the language (or the bitcode reader/writer, the parser,

etc...).

Intrinsic function names must all start with an "llvm." prefix. This prefix is reserved in LLVM for

intrinsic names; thus, function names may not begin with this prefix. Intrinsic functions must

always be external functions: you cannot define the body of intrinsic functions. Intrinsic

functions may only be used in call or invoke instructions: it is illegal to take the address of an

intrinsic function. Additionally, because intrinsic functions are part of the LLVM language, it is

required if any are added that they be documented here.

Some intrinsic functions can be overloaded, i.e., the intrinsic represents a family of functions that

perform the same operation but on different data types. Because LLVM can represent over 8

million different integer types, overloading is used commonly to allow an intrinsic function to

operate on any integer type. One or more of the argument types or the result type can be

overloaded to accept any integer type. Argument types may also be defined as exactly matching a

previous argument's type or the result type. This allows an intrinsic function which accepts

multiple arguments, but needs all of them to be of the same type, to only be overloaded with

respect to a single argument or the result.

Overloaded intrinsics will have the names of its overloaded argument types encoded into its

function name, each preceded by a period. Only those types which are overloaded result in a

name suffix. Arguments whose type is matched against another type do not. For example, the

llvm.ctpop function can take an integer of any width and returns an integer of exactly the same

integer width. This leads to a family of functions such as i8 @llvm.ctpop.i8(i8 %val) and i29

@llvm.ctpop.i29(i29 %val). Only one type, the return type, is overloaded, and only one type

suffix is required. Because the argument's type is matched against the return type, it does not

require its own name suffix.

To learn how to add an intrinsic function, please see the Extending LLVM Guide.

Other Operations

121

http://www.llvm.org/docs/ExtendingLLVM.html

Variable Argument Handling Intrinsics

Variable argument support is defined in LLVM with the va_arg instruction and these three

intrinsic functions. These functions are related to the similarly named macros defined in the

<stdarg.h> header file.

All of these functions operate on arguments that use a target-specific value type "va_list". The

LLVM assembly language reference manual does not define what this type is, so all

transformations should be prepared to handle these functions regardless of the type used.

This example shows how the va_arg instruction and the variable argument handling intrinsic

functions are used.

define i32 @test(i32 %X, ...) {
; Initialize variable argument processing
%ap = alloca i8*
%ap2 = bitcast i8** %ap to i8*
call void @llvm.va_start(i8* %ap2)

; Read a single integer argument
%tmp = va_arg i8** %ap, i32

; Demonstrate usage of llvm.va_copy and llvm.va_end
%aq = alloca i8*
%aq2 = bitcast i8** %aq to i8*
call void @llvm.va_copy(i8* %aq2, i8* %ap2)
call void @llvm.va_end(i8* %aq2)

; Stop processing of arguments.
call void @llvm.va_end(i8* %ap2)
ret i32 %tmp

}

declare void @llvm.va_start(i8*)
declare void @llvm.va_copy(i8*, i8*)
declare void @llvm.va_end(i8*)

Chapter X. Intrinsic Functions

122

'llvm.va_start' Intrinsic

Syntax:

declare void %llvm.va_start(i8* <arglist>)

Overview:

The 'llvm.va_start' intrinsic initializes *<arglist> for subsequent use by va_arg.

Arguments:

The argument is a pointer to a va_list element to initialize.

Semantics:

The 'llvm.va_start' intrinsic works just like the va_start macro available in C. In a target-

dependent way, it initializes the va_list element to which the argument points, so that the next

call to va_arg will produce the first variable argument passed to the function. Unlike the C

va_start macro, this intrinsic does not need to know the last argument of the function as the

compiler can figure that out.

'llvm.va_end' Intrinsic

Syntax:

declare void @llvm.va_end(i8* <arglist>)

Overview:

The 'llvm.va_end' intrinsic destroys *<arglist>, which has been initialized previously with

llvm.va_start or llvm.va_copy.

Arguments:

The argument is a pointer to a va_list to destroy.

Variable Argument Handling Intrinsics

123

Semantics:

The 'llvm.va_end' intrinsic works just like the va_end macro available in C. In a target-dependent

way, it destroys the va_list element to which the argument points. Calls to llvm.va_start and

llvm.va_copy must be matched exactly with calls to llvm.va_end.

'llvm.va_copy' Intrinsic

Syntax:

declare void @llvm.va_copy(i8* <destarglist>, i8* <srcarglist>)

Overview:

The 'llvm.va_copy' intrinsic copies the current argument position from the source argument list

to the destination argument list.

Arguments:

The first argument is a pointer to a va_list element to initialize. The second argument is a

pointer to a va_list element to copy from.

Semantics:

The 'llvm.va_copy' intrinsic works just like the va_copy macro available in C. In a target-

dependent way, it copies the source va_list element into the destination va_list element. This

intrinsic is necessary because the llvm.va_start intrinsic may be arbitrarily complex and

require, for example, memory allocation.

Accurate Garbage Collection Intrinsics

LLVM support for Accurate Garbage Collection (GC) requires the implementation and generation

of these intrinsics. These intrinsics allow identification of GC roots on the stack, as well as

garbage collector implementations that require read and write barriers. Front-ends for type-safe

garbage collected languages should generate these intrinsics to make use of the LLVM garbage

collectors. For more details, see Accurate Garbage Collection with LLVM.

Chapter X. Intrinsic Functions

124

http://www.llvm.org/docs/GarbageCollection.html
http://www.llvm.org/docs/GarbageCollection.html

The garbage collection intrinsics only operate on objects in the generic address space (address

space zero).

'llvm.gcroot' Intrinsic

Syntax:

declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)

Overview:

The 'llvm.gcroot' intrinsic declares the existence of a GC root to the code generator, and allows

some metadata to be associated with it.

Arguments:

The first argument specifies the address of a stack object that contains the root pointer. The

second pointer (which must be either a constant or a global value address) contains the meta-

data to be associated with the root.

Semantics:

At runtime, a call to this intrinsic stores a null pointer into the "ptrloc" location. At compile-time,

the code generator generates information to allow the runtime to find the pointer at GC safe

points. The 'llvm.gcroot' intrinsic may only be used in a function which specifies a GC algorithm.

'llvm.gcread' Intrinsic

Syntax:

declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)

Overview:

The 'llvm.gcread' intrinsic identifies reads of references from heap locations, allowing garbage

collector implementations that require read barriers.

Accurate Garbage Collection Intrinsics

125

Arguments:

The second argument is the address to read from, which should be an address allocated from the

garbage collector. The first object is a pointer to the start of the referenced object, if needed by

the language runtime (otherwise null).

Semantics:

The 'llvm.gcread' intrinsic has the same semantics as a load instruction, but may be replaced

with substantially more complex code by the garbage collector runtime, as needed. The

'llvm.gcread' intrinsic may only be used in a function which specifies a GC algorithm.

'llvm.gcwrite' Intrinsic

Syntax:

declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)

Overview:

The 'llvm.gcwrite' intrinsic identifies writes of references to heap locations, allowing garbage

collector implementations that require write barriers (such as generational or reference counting

collectors).

Arguments:

The first argument is the reference to store, the second is the start of the object to store it to, and

the third is the address of the field of Obj to store to. If the runtime does not require a pointer to

the object, Obj may be null.

Semantics:

The 'llvm.gcwrite' intrinsic has the same semantics as a store instruction, but may be replaced

with substantially more complex code by the garbage collector runtime, as needed. The

'llvm.gcwrite' intrinsic may only be used in a function which specifies a GC algorithm.

Chapter X. Intrinsic Functions

126

Code Generator Intrinsics

These intrinsics are provided by LLVM to expose special features that may only be implemented

with code generator support.

'llvm.returnaddress' Intrinsic

Syntax:

declare i8 *@llvm.returnaddress(i32 <level>)

Overview:

The 'llvm.returnaddress' intrinsic attempts to compute a target-specific value indicating the

return address of the current function or one of its callers.

Arguments:

The argument to this intrinsic indicates which function to return the address for. Zero indicates

the calling function, one indicates its caller, etc. The argument is required to be a constant

integer value.

Semantics:

The 'llvm.returnaddress' intrinsic either returns a pointer indicating the return address of the

specified call frame, or zero if it cannot be identified. The value returned by this intrinsic is likely

to be incorrect or 0 for arguments other than zero, so it should only be used for debugging

purposes.

Note that calling this intrinsic does not prevent function inlining or other aggressive

transformations, so the value returned may not be that of the obvious source-language caller.

'llvm.frameaddress' Intrinsic

Syntax:

declare i8* @llvm.frameaddress(i32 <level>)

Code Generator Intrinsics

127

Overview:

The 'llvm.frameaddress' intrinsic attempts to return the target-specific frame pointer value for

the specified stack frame.

Arguments:

The argument to this intrinsic indicates which function to return the frame pointer for. Zero

indicates the calling function, one indicates its caller, etc. The argument is required to be a

constant integer value.

Semantics:

The 'llvm.frameaddress' intrinsic either returns a pointer indicating the frame address of the

specified call frame, or zero if it cannot be identified. The value returned by this intrinsic is likely

to be incorrect or 0 for arguments other than zero, so it should only be used for debugging

purposes.

Note that calling this intrinsic does not prevent function inlining or other aggressive

transformations, so the value returned may not be that of the obvious source-language caller.

'llvm.stacksave' Intrinsic

Syntax:

declare i8* @llvm.stacksave()

Overview:

The 'llvm.stacksave' intrinsic is used to remember the current state of the function stack, for

use with llvm.stackrestore. This is useful for implementing language features like scoped

automatic variable sized arrays in C99.

Semantics:

This intrinsic returns a opaque pointer value that can be passed to llvm.stackrestore. When an

llvm.stackrestore intrinsic is executed with a value saved from llvm.stacksave, it effectively

restores the state of the stack to the state it was in when the llvm.stacksave intrinsic executed.

Chapter X. Intrinsic Functions

128

In practice, this pops any alloca blocks from the stack that were allocated after the

llvm.stacksave was executed.

'llvm.stackrestore' Intrinsic

Syntax:

declare void @llvm.stackrestore(i8* %ptr)

Overview:

The 'llvm.stackrestore' intrinsic is used to restore the state of the function stack to the state it

was in when the corresponding llvm.stacksave intrinsic executed. This is useful for

implementing language features like scoped automatic variable sized arrays in C99.

Semantics:

See the description for llvm.stacksave.

'llvm.prefetch' Intrinsic

Syntax:

declare void @llvm.prefetch(i8* <address>, i32 <rw>, i32 <locality>, i32 <cache type>)

Overview:

The 'llvm.prefetch' intrinsic is a hint to the code generator to insert a prefetch instruction if

supported; otherwise, it is a noop. Prefetches have no effect on the behavior of the program but

can change its performance characteristics.

Arguments:

address is the address to be prefetched, rw is the specifier determining if the fetch should be for a

read (0) or write (1), and locality is a temporal locality specifier ranging from (0) - no locality, to

(3) - extremely local keep in cache. The cache type specifies whether the prefetch is performed

on the data (1) or instruction (0) cache. The rw, locality and cache type arguments must be

constant integers.

Code Generator Intrinsics

129

Semantics:

This intrinsic does not modify the behavior of the program. In particular, prefetches cannot trap

and do not produce a value. On targets that support this intrinsic, the prefetch can provide hints

to the processor cache for better performance.

'llvm.pcmarker' Intrinsic

Syntax:

declare void @llvm.pcmarker(i32 <id>)

Overview:

The 'llvm.pcmarker' intrinsic is a method to export a Program Counter (PC) in a region of code to

simulators and other tools. The method is target specific, but it is expected that the marker will

use exported symbols to transmit the PC of the marker. The marker makes no guarantees that it

will remain with any specific instruction after optimizations. It is possible that the presence of a

marker will inhibit optimizations. The intended use is to be inserted after optimizations to allow

correlations of simulation runs.

Arguments:

id is a numerical id identifying the marker.

Semantics:

This intrinsic does not modify the behavior of the program. Backends that do not support this

intrinsic may ignore it.

'llvm.readcyclecounter' Intrinsic

Syntax:

declare i64 @llvm.readcyclecounter()

Chapter X. Intrinsic Functions

130

Overview:

The 'llvm.readcyclecounter' intrinsic provides access to the cycle counter register (or similar

low latency, high accuracy clocks) on those targets that support it. On X86, it should map to

RDTSC. On Alpha, it should map to RPCC. As the backing counters overflow quickly (on the order

of 9 seconds on alpha), this should only be used for small timings.

Semantics:

When directly supported, reading the cycle counter should not modify any memory.

Implementations are allowed to either return a application specific value or a system wide value.

On backends without support, this is lowered to a constant 0.

Standard C Library Intrinsics

LLVM provides intrinsics for a few important standard C library functions. These intrinsics allow

source-language front-ends to pass information about the alignment of the pointer arguments to

the code generator, providing opportunity for more efficient code generation.

'llvm.memcpy' Intrinsic

Syntax:

This is an overloaded intrinsic. You can use llvm.memcpy on any integer bit width and for

different address spaces. Not all targets support all bit widths however.

declare void @llvm.memcpy.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
i32 <len>, i32 <align>, i1 <isvolatile>)

declare void @llvm.memcpy.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
i64 <len>, i32 <align>, i1 <isvolatile>)

Overview:

The 'llvm.memcpy.*' intrinsics copy a block of memory from the source location to the

destination location.

Note that, unlike the standard libc function, the llvm.memcpy.* intrinsics do not return a value,

takes extra alignment/isvolatile arguments and the pointers can be in specified address spaces.

Standard C Library Intrinsics

131

Arguments:

The first argument is a pointer to the destination, the second is a pointer to the source. The third

argument is an integer argument specifying the number of bytes to copy, the fourth argument is

the alignment of the source and destination locations, and the fifth is a boolean indicating a

volatile access.

If the call to this intrinsic has an alignment value that is not 0 or 1, then the caller guarantees that

both the source and destination pointers are aligned to that boundary.

If the isvolatile parameter is true, the llvm.memcpy call is a volatile operation. The detailed

access behavior is not very cleanly specified and it is unwise to depend on it.

Semantics:

The 'llvm.memcpy.*' intrinsics copy a block of memory from the source location to the

destination location, which are not allowed to overlap. It copies "len" bytes of memory over. If

the argument is known to be aligned to some boundary, this can be specified as the fourth

argument, otherwise it should be set to 0 or 1.

'llvm.memmove' Intrinsic

Syntax:

This is an overloaded intrinsic. You can use llvm.memmove on any integer bit width and for

different address space. Not all targets support all bit widths however.

declare void @llvm.memmove.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
i32 <len>, i32 <align>, i1 <isvolatile>)

declare void @llvm.memmove.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
i64 <len>, i32 <align>, i1 <isvolatile>)

Overview:

The 'llvm.memmove.*' intrinsics move a block of memory from the source location to the

destination location. It is similar to the 'llvm.memcpy' intrinsic but allows the two memory

locations to overlap.

Chapter X. Intrinsic Functions

132

Note that, unlike the standard libc function, the llvm.memmove.* intrinsics do not return a value,

takes extra alignment/isvolatile arguments and the pointers can be in specified address spaces.

Arguments:

The first argument is a pointer to the destination, the second is a pointer to the source. The third

argument is an integer argument specifying the number of bytes to copy, the fourth argument is

the alignment of the source and destination locations, and the fifth is a boolean indicating a

volatile access.

If the call to this intrinsic has an alignment value that is not 0 or 1, then the caller guarantees that

the source and destination pointers are aligned to that boundary.

If the isvolatile parameter is true, the llvm.memmove call is a volatile operation. The detailed

access behavior is not very cleanly specified and it is unwise to depend on it.

Semantics:

The 'llvm.memmove.*' intrinsics copy a block of memory from the source location to the

destination location, which may overlap. It copies "len" bytes of memory over. If the argument is

known to be aligned to some boundary, this can be specified as the fourth argument, otherwise it

should be set to 0 or 1.

'llvm.memset.*' Intrinsics

Syntax:

This is an overloaded intrinsic. You can use llvm.memset on any integer bit width and for

different address spaces. However, not all targets support all bit widths.

declare void @llvm.memset.p0i8.i32(i8* <dest>, i8 <val>,
i32 <len>, i32 <align>, i1 <isvolatile>)

declare void @llvm.memset.p0i8.i64(i8* <dest>, i8 <val>,
i64 <len>, i32 <align>, i1 <isvolatile>)

Overview:

The 'llvm.memset.*' intrinsics fill a block of memory with a particular byte value.

Standard C Library Intrinsics

133

Note that, unlike the standard libc function, the llvm.memset intrinsic does not return a value

and takes extra alignment/volatile arguments. Also, the destination can be in an arbitrary

address space.

Arguments:

The first argument is a pointer to the destination to fill, the second is the byte value with which

to fill it, the third argument is an integer argument specifying the number of bytes to fill, and the

fourth argument is the known alignment of the destination location.

If the call to this intrinsic has an alignment value that is not 0 or 1, then the caller guarantees that

the destination pointer is aligned to that boundary.

If the isvolatile parameter is true, the llvm.memset call is a volatile operation. The detailed

access behavior is not very cleanly specified and it is unwise to depend on it.

Semantics:

The 'llvm.memset.*' intrinsics fill "len" bytes of memory starting at the destination location. If

the argument is known to be aligned to some boundary, this can be specified as the fourth

argument, otherwise it should be set to 0 or 1.

'llvm.sqrt.*' Intrinsic

Syntax:

This is an overloaded intrinsic. You can use llvm.sqrt on any floating point or vector of floating

point type. Not all targets support all types however.

declare float @llvm.sqrt.f32(float %Val)
declare double @llvm.sqrt.f64(double %Val)
declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
declare fp128 @llvm.sqrt.f128(fp128 %Val)
declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)

Overview:

The 'llvm.sqrt' intrinsics return the sqrt of the specified operand, returning the same value as

the libm 'sqrt' functions would. Unlike sqrt in libm, however, llvm.sqrt has undefined behavior

Chapter X. Intrinsic Functions

134

for negative numbers other than -0.0 (which allows for better optimization, because there is no

need to worry about errno being set). llvm.sqrt(-0.0) is defined to return -0.0 like IEEE sqrt.

Arguments:

The argument and return value are floating point numbers of the same type.

Semantics:

This function returns the sqrt of the specified operand if it is a nonnegative floating point

number.

'llvm.powi.*' Intrinsic

Syntax:

This is an overloaded intrinsic. You can use llvm.powi on any floating point or vector of floating

point type. Not all targets support all types however.

declare float @llvm.powi.f32(float %Val, i32 %power)
declare double @llvm.powi.f64(double %Val, i32 %power)
declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)

Overview:

The 'llvm.powi.*' intrinsics return the first operand raised to the specified (positive or negative)

power. The order of evaluation of multiplications is not defined. When a vector of floating point

type is used, the second argument remains a scalar integer value.

Arguments:

The second argument is an integer power, and the first is a value to raise to that power.

Semantics:

This function returns the first value raised to the second power with an unspecified sequence of

rounding operations.

Standard C Library Intrinsics

135

'llvm.sin.*' Intrinsic

Syntax:

This is an overloaded intrinsic. You can use llvm.sin on any floating point or vector of floating

point type. Not all targets support all types however.

declare float @llvm.sin.f32(float %Val)
declare double @llvm.sin.f64(double %Val)
declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
declare fp128 @llvm.sin.f128(fp128 %Val)
declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)

Overview:

The 'llvm.sin.*' intrinsics return the sine of the operand.

Arguments:

The argument and return value are floating point numbers of the same type.

Semantics:

This function returns the sine of the specified operand, returning the same values as the libm sin

functions would, and handles error conditions in the same way.

'llvm.cos.*' Intrinsic

Syntax:

This is an overloaded intrinsic. You can use llvm.cos on any floating point or vector of floating

point type. Not all targets support all types however.

declare float @llvm.cos.f32(float %Val)
declare double @llvm.cos.f64(double %Val)
declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
declare fp128 @llvm.cos.f128(fp128 %Val)
declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)

Chapter X. Intrinsic Functions

136

Overview:

The 'llvm.cos.*' intrinsics return the cosine of the operand.

Arguments:

The argument and return value are floating point numbers of the same type.

Semantics:

This function returns the cosine of the specified operand, returning the same values as the libm

cos functions would, and handles error conditions in the same way.

'llvm.pow.*' Intrinsic

Syntax:

This is an overloaded intrinsic. You can use llvm.pow on any floating point or vector of floating

point type. Not all targets support all types however.

declare float @llvm.pow.f32(float %Val, float %Power)
declare double @llvm.pow.f64(double %Val, double %Power)
declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)

Overview:

The 'llvm.pow.*' intrinsics return the first operand raised to the specified (positive or negative)

power.

Arguments:

The second argument is a floating point power, and the first is a value to raise to that power.

Semantics:

This function returns the first value raised to the second power, returning the same values as the

libm pow functions would, and handles error conditions in the same way.

Standard C Library Intrinsics

137

'llvm.exp.*' Intrinsic

Syntax:

This is an overloaded intrinsic. You can use llvm.exp on any floating point or vector of floating

point type. Not all targets support all types however.

declare float @llvm.exp.f32(float %Val)
declare double @llvm.exp.f64(double %Val)
declare x86_fp80 @llvm.exp.f80(x86_fp80 %Val)
declare fp128 @llvm.exp.f128(fp128 %Val)
declare ppc_fp128 @llvm.exp.ppcf128(ppc_fp128 %Val)

Overview:

The 'llvm.exp.*' intrinsics perform the exp function.

Arguments:

The argument and return value are floating point numbers of the same type.

Semantics:

This function returns the same values as the libm exp functions would, and handles error

conditions in the same way.

'llvm.log.*' Intrinsic

Syntax:

This is an overloaded intrinsic. You can use llvm.log on any floating point or vector of floating

point type. Not all targets support all types however.

declare float @llvm.log.f32(float %Val)
declare double @llvm.log.f64(double %Val)
declare x86_fp80 @llvm.log.f80(x86_fp80 %Val)
declare fp128 @llvm.log.f128(fp128 %Val)
declare ppc_fp128 @llvm.log.ppcf128(ppc_fp128 %Val)

Chapter X. Intrinsic Functions

138

Overview:

The 'llvm.log.*' intrinsics perform the log function.

Arguments:

The argument and return value are floating point numbers of the same type.

Semantics:

This function returns the same values as the libm log functions would, and handles error

conditions in the same way.

'llvm.fma.*' Intrinsic

Syntax:

This is an overloaded intrinsic. You can use llvm.fma on any floating point or vector of floating

point type. Not all targets support all types however.

declare float @llvm.fma.f32(float %a, float %b, float %c)
declare double @llvm.fma.f64(double %a, double %b, double %c)
declare x86_fp80 @llvm.fma.f80(x86_fp80 %a, x86_fp80 %b, x86_fp80 %c)
declare fp128 @llvm.fma.f128(fp128 %a, fp128 %b, fp128 %c)
declare ppc_fp128 @llvm.fma.ppcf128(ppc_fp128 %a, ppc_fp128 %b, ppc_fp128 %c)

Overview:

The 'llvm.fma.*' intrinsics perform the fused multiply-add operation.

Arguments:

The argument and return value are floating point numbers of the same type.

Semantics:

This function returns the same values as the libm fma functions would.

Standard C Library Intrinsics

139

Bit Manipulation Intrinsics

LLVM provides intrinsics for a few important bit manipulation operations. These allow efficient

code generation for some algorithms.

'llvm.bswap.*' Intrinsics

Syntax:

This is an overloaded intrinsic function. You can use bswap on any integer type that is an even

number of bytes (i.e. BitWidth % 16 == 0).

declare i16 @llvm.bswap.i16(i16 <id>)
declare i32 @llvm.bswap.i32(i32 <id>)
declare i64 @llvm.bswap.i64(i64 <id>)

Overview:

The 'llvm.bswap' family of intrinsics is used to byte swap integer values with an even number of

bytes (positive multiple of 16 bits). These are useful for performing operations on data that is not

in the target's native byte order.

Semantics:

The llvm.bswap.i16 intrinsic returns an i16 value that has the high and low byte of the input i16

swapped. Similarly, the llvm.bswap.i32 intrinsic returns an i32 value that has the four bytes of

the input i32 swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the returned i32 will

have its bytes in 3, 2, 1, 0 order. The llvm.bswap.i48, llvm.bswap.i64 and other intrinsics extend

this concept to additional even-byte lengths (6 bytes, 8 bytes and more, respectively).

'llvm.ctpop.*' Intrinsic

Syntax:

This is an overloaded intrinsic. You can use llvm.ctpop on any integer bit width, or on any vector

with integer elements. Not all targets support all bit widths or vector types, however.

declare i8 @llvm.ctpop.i8(i8 <src>)
declare i16 @llvm.ctpop.i16(i16 <src>)

Chapter X. Intrinsic Functions

140

declare i32 @llvm.ctpop.i32(i32 <src>)
declare i64 @llvm.ctpop.i64(i64 <src>)
declare i256 @llvm.ctpop.i256(i256 <src>)
declare <2 x i32> @llvm.ctpop.v2i32(<2 x i32> <src>)

Overview:

The 'llvm.ctpop' family of intrinsics counts the number of bits set in a value.

Arguments:

The only argument is the value to be counted. The argument may be of any integer type, or a

vector with integer elements. The return type must match the argument type.

Semantics:

The 'llvm.ctpop' intrinsic counts the 1's in a variable, or within each element of a vector.

'llvm.ctlz.*' Intrinsic

Syntax:

This is an overloaded intrinsic. You can use llvm.ctlz on any integer bit width, or any vector

whose elements are integers. Not all targets support all bit widths or vector types, however.

declare i8 @llvm.ctlz.i8 (i8 <src>)
declare i16 @llvm.ctlz.i16(i16 <src>)
declare i32 @llvm.ctlz.i32(i32 <src>)
declare i64 @llvm.ctlz.i64(i64 <src>)
declare i256 @llvm.ctlz.i256(i256 <src>)
declare <2 x i32> @llvm.ctlz.v2i32(<2 x i32> <src;gt)

Overview:

The 'llvm.ctlz' family of intrinsic functions counts the number of leading zeros in a variable.

Arguments:

The only argument is the value to be counted. The argument may be of any integer type, or any

vector type with integer element type. The return type must match the argument type.

Bit Manipulation Intrinsics

141

Semantics:

The 'llvm.ctlz' intrinsic counts the leading (most significant) zeros in a variable, or within each

element of the vector if the operation is of vector type. If the src == 0 then the result is the size in

bits of the type of src. For example, llvm.ctlz(i32 2) = 30.

'llvm.cttz.*' Intrinsic

Syntax:

This is an overloaded intrinsic. You can use llvm.cttz on any integer bit width, or any vector of

integer elements. Not all targets support all bit widths or vector types, however.

declare i8 @llvm.cttz.i8 (i8 <src>)
declare i16 @llvm.cttz.i16(i16 <src>)
declare i32 @llvm.cttz.i32(i32 <src>)
declare i64 @llvm.cttz.i64(i64 <src>)
declare i256 @llvm.cttz.i256(i256 <src>)
declase <2 x i32> @llvm.cttz.v2i32(<2 x i32> <src>)

Overview:

The 'llvm.cttz' family of intrinsic functions counts the number of trailing zeros.

Arguments:

The only argument is the value to be counted. The argument may be of any integer type, or a

vectory with integer element type.. The return type must match the argument type.

Semantics:

The 'llvm.cttz' intrinsic counts the trailing (least significant) zeros in a variable, or within each

element of a vector. If the src == 0 then the result is the size in bits of the type of src. For example,

llvm.cttz(2) = 1.

Arithmetic with Overflow Intrinsics

LLVM provides intrinsics for some arithmetic with overflow operations.

Chapter X. Intrinsic Functions

142

'llvm.sadd.with.overflow.*' Intrinsics

Syntax:

This is an overloaded intrinsic. You can use llvm.sadd.with.overflow on any integer bit width.

declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)

Overview:

The 'llvm.sadd.with.overflow' family of intrinsic functions perform a signed addition of the

two arguments, and indicate whether an overflow occurred during the signed summation.

Arguments:

The arguments (%a and %b) and the first element of the result structure may be of integer types

of any bit width, but they must have the same bit width. The second element of the result

structure must be of type i1. %a and %b are the two values that will undergo signed addition.

Semantics:

The 'llvm.sadd.with.overflow' family of intrinsic functions perform a signed addition of the

two variables. They return a structure — the first element of which is the signed summation, and

the second element of which is a bit specifying if the signed summation resulted in an overflow.

Examples:

%res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
%sum = extractvalue {i32, i1} %res, 0
%obit = extractvalue {i32, i1} %res, 1
br i1 %obit, label %overflow, label %normal

'llvm.uadd.with.overflow.*' Intrinsics

Syntax:

This is an overloaded intrinsic. You can use llvm.uadd.with.overflow on any integer bit width.

Arithmetic with Overflow Intrinsics

143

declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)

Overview:

The 'llvm.uadd.with.overflow' family of intrinsic functions perform an unsigned addition of the

two arguments, and indicate whether a carry occurred during the unsigned summation.

Arguments:

The arguments (%a and %b) and the first element of the result structure may be of integer types

of any bit width, but they must have the same bit width. The second element of the result

structure must be of type i1. %a and %b are the two values that will undergo unsigned addition.

Semantics:

The 'llvm.uadd.with.overflow' family of intrinsic functions perform an unsigned addition of the

two arguments. They return a structure — the first element of which is the sum, and the second

element of which is a bit specifying if the unsigned summation resulted in a carry.

Examples:

%res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
%sum = extractvalue {i32, i1} %res, 0
%obit = extractvalue {i32, i1} %res, 1
br i1 %obit, label %carry, label %normal

'llvm.ssub.with.overflow.*' Intrinsics

Syntax:

This is an overloaded intrinsic. You can use llvm.ssub.with.overflow on any integer bit width.

declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)

Chapter X. Intrinsic Functions

144

Overview:

The 'llvm.ssub.with.overflow' family of intrinsic functions perform a signed subtraction of the

two arguments, and indicate whether an overflow occurred during the signed subtraction.

Arguments:

The arguments (%a and %b) and the first element of the result structure may be of integer types

of any bit width, but they must have the same bit width. The second element of the result

structure must be of type i1. %a and %b are the two values that will undergo signed subtraction.

Semantics:

The 'llvm.ssub.with.overflow' family of intrinsic functions perform a signed subtraction of the

two arguments. They return a structure — the first element of which is the subtraction, and the

second element of which is a bit specifying if the signed subtraction resulted in an overflow.

Examples:

%res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
%sum = extractvalue {i32, i1} %res, 0
%obit = extractvalue {i32, i1} %res, 1
br i1 %obit, label %overflow, label %normal

'llvm.usub.with.overflow.*' Intrinsics

Syntax:

This is an overloaded intrinsic. You can use llvm.usub.with.overflow on any integer bit width.

declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)

Overview:

The 'llvm.usub.with.overflow' family of intrinsic functions perform an unsigned subtraction of

the two arguments, and indicate whether an overflow occurred during the unsigned subtraction.

Arithmetic with Overflow Intrinsics

145

Arguments:

The arguments (%a and %b) and the first element of the result structure may be of integer types

of any bit width, but they must have the same bit width. The second element of the result

structure must be of type i1. %a and %b are the two values that will undergo unsigned subtraction.

Semantics:

The 'llvm.usub.with.overflow' family of intrinsic functions perform an unsigned subtraction of

the two arguments. They return a structure — the first element of which is the subtraction, and

the second element of which is a bit specifying if the unsigned subtraction resulted in an

overflow.

Examples:

%res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
%sum = extractvalue {i32, i1} %res, 0
%obit = extractvalue {i32, i1} %res, 1
br i1 %obit, label %overflow, label %normal

'llvm.smul.with.overflow.*' Intrinsics

Syntax:

This is an overloaded intrinsic. You can use llvm.smul.with.overflow on any integer bit width.

declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)

Overview:

The 'llvm.smul.with.overflow' family of intrinsic functions perform a signed multiplication of

the two arguments, and indicate whether an overflow occurred during the signed multiplication.

Arguments:

The arguments (%a and %b) and the first element of the result structure may be of integer types

of any bit width, but they must have the same bit width. The second element of the result

structure must be of type i1. %a and %b are the two values that will undergo signed multiplication.

Chapter X. Intrinsic Functions

146

Semantics:

The 'llvm.smul.with.overflow' family of intrinsic functions perform a signed multiplication of

the two arguments. They return a structure — the first element of which is the multiplication,

and the second element of which is a bit specifying if the signed multiplication resulted in an

overflow.

Examples:

%res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
%sum = extractvalue {i32, i1} %res, 0
%obit = extractvalue {i32, i1} %res, 1
br i1 %obit, label %overflow, label %normal

'llvm.umul.with.overflow.*' Intrinsics

Syntax:

This is an overloaded intrinsic. You can use llvm.umul.with.overflow on any integer bit width.

declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)

Overview:

The 'llvm.umul.with.overflow' family of intrinsic functions perform a unsigned multiplication

of the two arguments, and indicate whether an overflow occurred during the unsigned

multiplication.

Arguments:

The arguments (%a and %b) and the first element of the result structure may be of integer types

of any bit width, but they must have the same bit width. The second element of the result

structure must be of type i1. %a and %b are the two values that will undergo unsigned

multiplication.

Arithmetic with Overflow Intrinsics

147

Semantics:

The 'llvm.umul.with.overflow' family of intrinsic functions perform an unsigned multiplication

of the two arguments. They return a structure — the first element of which is the multiplication,

and the second element of which is a bit specifying if the unsigned multiplication resulted in an

overflow.

Examples:

%res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
%sum = extractvalue {i32, i1} %res, 0
%obit = extractvalue {i32, i1} %res, 1
br i1 %obit, label %overflow, label %normal

Half Precision Floating Point Intrinsics

Half precision floating point is a storage-only format. This means that it is a dense encoding (in

memory) but does not support computation in the format.

This means that code must first load the half-precision floating point value as an i16, then

convert it to float with llvm.convert.from.fp16. Computation can then be performed on the

float value (including extending to double etc). To store the value back to memory, it is first

converted to float if needed, then converted to i16 with llvm.convert.to.fp16, then storing as

an i16 value.

'llvm.convert.to.fp16' Intrinsic

Syntax:

declare i16 @llvm.convert.to.fp16(f32 %a)

Overview:

The 'llvm.convert.to.fp16' intrinsic function performs a conversion from single precision

floating point format to half precision floating point format.

Arguments:

The intrinsic function contains single argument - the value to be converted.

Chapter X. Intrinsic Functions

148

Semantics:

The 'llvm.convert.to.fp16' intrinsic function performs a conversion from single precision

floating point format to half precision floating point format. The return value is an i16 which

contains the converted number.

Examples:

%res = call i16 @llvm.convert.to.fp16(f32 %a)
store i16 %res, i16* @x, align 2

'llvm.convert.from.fp16' Intrinsic

Syntax:

declare f32 @llvm.convert.from.fp16(i16 %a)

Overview:

The 'llvm.convert.from.fp16' intrinsic function performs a conversion from half precision

floating point format to single precision floating point format.

Arguments:

The intrinsic function contains single argument - the value to be converted.

Semantics:

The 'llvm.convert.from.fp16' intrinsic function performs a conversion from half single

precision floating point format to single precision floating point format. The input half-float

value is represented by an i16 value.

Examples:

%a = load i16* @x, align 2
%res = call f32 @llvm.convert.from.fp16(i16 %a)

Half Precision Floating Point Intrinsics

149

Debugger Intrinsics

The LLVM debugger intrinsics (which all start with llvm.dbg. prefix), are described in the LLVM

Source Level Debugging document.

Exception Handling Intrinsics

The LLVM exception handling intrinsics (which all start with llvm.eh. prefix), are described in

the LLVM Exception Handling document.

Trampoline Intrinsics

These intrinsics make it possible to excise one parameter, marked with the nest attribute, from a

function. The result is a callable function pointer lacking the nest parameter - the caller does not

need to provide a value for it. Instead, the value to use is stored in advance in a "trampoline", a

block of memory usually allocated on the stack, which also contains code to splice the nest value

into the argument list. This is used to implement the GCC nested function address extension.

For example, if the function is i32 f(i8* nest %c, i32 %x, i32 %y) then the resulting

function pointer has signature i32 (i32, i32)*. It can be created as follows:

%tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
%tramp1 = getelementptr [10 x i8]* %tramp, i32 0, i32 0
call i8* @llvm.init.trampoline(i8* %tramp1, i8* bitcast (i32 (i8*, i32, i32)* @f to i8*), i8* %nval)
%p = call i8* @llvm.adjust.trampoline(i8* %tramp1)
%fp = bitcast i8* %p to i32 (i32, i32)*

The call %val = call i32 %fp(i32 %x, i32 %y) is then equivalent to %val = call i32 %f(i8*

%nval, i32 %x, i32 %y).

'llvm.init.trampoline' Intrinsic

Syntax:

declare void @llvm.init.trampoline(i8* <tramp>, i8* <func>, i8* <nval>)

Overview:

This fills the memory pointed to by tramp with executable code, turning it into a trampoline.

Chapter X. Intrinsic Functions

150

http://www.llvm.org/docs/SourceLevelDebugging.html#format_common_intrinsics
http://www.llvm.org/docs/SourceLevelDebugging.html#format_common_intrinsics
http://www.llvm.org/docs/ExceptionHandling.html#format_common_intrinsics

Arguments:

The llvm.init.trampoline intrinsic takes three arguments, all pointers. The tramp argument

must point to a sufficiently large and sufficiently aligned block of memory; this memory is

written to by the intrinsic. Note that the size and the alignment are target-specific - LLVM

currently provides no portable way of determining them, so a front-end that generates this

intrinsic needs to have some target-specific knowledge. The func argument must hold a function

bitcast to an i8*.

Semantics:

The block of memory pointed to by tramp is filled with target dependent code, turning it into a

function. Then tramp needs to be passed to llvm.adjust.trampoline to get a pointer which can be

bitcast (to a new function) and called. The new function's signature is the same as that of func

with any arguments marked with the nest attribute removed. At most one such nest argument is

allowed, and it must be of pointer type. Calling the new function is equivalent to calling func with

the same argument list, but with nval used for the missing nest argument. If, after calling

llvm.init.trampoline, the memory pointed to by tramp is modified, then the effect of any later

call to the returned function pointer is undefined.

'llvm.adjust.trampoline' Intrinsic

Syntax:

declare i8* @llvm.adjust.trampoline(i8* <tramp>)

Overview:

This performs any required machine-specific adjustment to the address of a trampoline (passed

as tramp).

Arguments:

tramp must point to a block of memory which already has trampoline code filled in by a previous

call to llvm.init.trampoline .

Trampoline Intrinsics

151

Semantics:

On some architectures the address of the code to be executed needs to be different to the address

where the trampoline is actually stored. This intrinsic returns the executable address

corresponding to tramp after performing the required machine specific adjustments. The pointer

returned can then be bitcast and executed.

Atomic Operations and Synchronization Intrinsics

These intrinsic functions expand the "universal IR" of LLVM to represent hardware constructs for

atomic operations and memory synchronization. This provides an interface to the hardware, not

an interface to the programmer. It is aimed at a low enough level to allow any programming

models or APIs (Application Programming Interfaces) which need atomic behaviors to map

cleanly onto it. It is also modeled primarily on hardware behavior. Just as hardware provides a

"universal IR" for source languages, it also provides a starting point for developing a "universal"

atomic operation and synchronization IR.

These do not form an API such as high-level threading libraries, software transaction memory

systems, atomic primitives, and intrinsic functions as found in BSD, GNU libc, atomic_ops, APR,

and other system and application libraries. The hardware interface provided by LLVM should

allow a clean implementation of all of these APIs and parallel programming models. No one model

or paradigm should be selected above others unless the hardware itself ubiquitously does so.

'llvm.memory.barrier' Intrinsic

Syntax:

declare void @llvm.memory.barrier(i1 <ll>, i1 <ls>, i1 <sl>, i1 <ss>, i1 <device>)

Overview:

The llvm.memory.barrier intrinsic guarantees ordering between specific pairs of memory access

types.

Chapter X. Intrinsic Functions

152

Arguments:

The llvm.memory.barrier intrinsic requires five boolean arguments. The first four arguments

enables a specific barrier as listed below. The fifth argument specifies that the barrier applies to

io or device or uncached memory.

• ll: load-load barrier

• ls: load-store barrier

• sl: store-load barrier

• ss: store-store barrier

• device: barrier applies to device and uncached memory also.

Semantics:

This intrinsic causes the system to enforce some ordering constraints upon the loads and stores

of the program. This barrier does not indicate when any events will occur, it only enforces an

order in which they occur. For any of the specified pairs of load and store operations (f.ex. load-

load, or store-load), all of the first operations preceding the barrier will complete before any of

the second operations succeeding the barrier begin. Specifically the semantics for each pairing is

as follows:

• ll: All loads before the barrier must complete before any load after the barrier begins.

• ls: All loads before the barrier must complete before any store after the barrier begins.

• ss: All stores before the barrier must complete before any store after the barrier begins.

• sl: All stores before the barrier must complete before any load after the barrier begins.

These semantics are applied with a logical "and" behavior when more than one is enabled in a

single memory barrier intrinsic.

Backends may implement stronger barriers than those requested when they do not support as

fine grained a barrier as requested. Some architectures do not need all types of barriers and on

such architectures, these become noops.

Example:

%mallocP = tail call i8* @malloc(i32 ptrtoint (i32* getelementptr (i32* null, i32 1) to i32))
%ptr = bitcast i8* %mallocP to i32*

store i32 4, %ptr

Atomic Operations and Synchronization Intrinsics

153

%result1 = load i32* %ptr ; yields {i32}:result1 = 4
call void @llvm.memory.barrier(i1 false, i1 true, i1 false, i1 false, i1 true)

; guarantee the above finishes
store i32 8, %ptr ; before this begins

'llvm.atomic.cmp.swap.*' Intrinsic

Syntax:

This is an overloaded intrinsic. You can use llvm.atomic.cmp.swap on any integer bit width and

for different address spaces. Not all targets support all bit widths however.

declare i8 @llvm.atomic.cmp.swap.i8.p0i8(i8* <ptr>, i8 <cmp>, i8 <val>)
declare i16 @llvm.atomic.cmp.swap.i16.p0i16(i16* <ptr>, i16 <cmp>, i16 <val>)
declare i32 @llvm.atomic.cmp.swap.i32.p0i32(i32* <ptr>, i32 <cmp>, i32 <val>)
declare i64 @llvm.atomic.cmp.swap.i64.p0i64(i64* <ptr>, i64 <cmp>, i64 <val>)

Overview:

This loads a value in memory and compares it to a given value. If they are equal, it stores a new

value into the memory.

Arguments:

The llvm.atomic.cmp.swap intrinsic takes three arguments. The result as well as both cmp and

val must be integer values with the same bit width. The ptr argument must be a pointer to a

value of this integer type. While any bit width integer may be used, targets may only lower

representations they support in hardware.

Semantics:

This entire intrinsic must be executed atomically. It first loads the value in memory pointed to by

ptr and compares it with the value cmp. If they are equal, val is stored into the memory. The

loaded value is yielded in all cases. This provides the equivalent of an atomic compare-and-swap

operation within the SSA framework.

Chapter X. Intrinsic Functions

154

Examples:

%mallocP = tail call i8* @malloc(i32 ptrtoint (i32* getelementptr (i32* null, i32 1) to i32))
%ptr = bitcast i8* %mallocP to i32*

store i32 4, %ptr

%val1 = add i32 4, 4
%result1 = call i32 @llvm.atomic.cmp.swap.i32.p0i32(i32* %ptr, i32 4, %val1)

; yields {i32}:result1 = 4
%stored1 = icmp eq i32 %result1, 4 ; yields {i1}:stored1 = true
%memval1 = load i32* %ptr ; yields {i32}:memval1 = 8

%val2 = add i32 1, 1
%result2 = call i32 @llvm.atomic.cmp.swap.i32.p0i32(i32* %ptr, i32 5, %val2)

; yields {i32}:result2 = 8
%stored2 = icmp eq i32 %result2, 5 ; yields {i1}:stored2 = false

%memval2 = load i32* %ptr ; yields {i32}:memval2 = 8

'llvm.atomic.swap.*' Intrinsic

Syntax:

This is an overloaded intrinsic. You can use llvm.atomic.swap on any integer bit width. Not all

targets support all bit widths however.

declare i8 @llvm.atomic.swap.i8.p0i8(i8* <ptr>, i8 <val>)
declare i16 @llvm.atomic.swap.i16.p0i16(i16* <ptr>, i16 <val>)
declare i32 @llvm.atomic.swap.i32.p0i32(i32* <ptr>, i32 <val>)
declare i64 @llvm.atomic.swap.i64.p0i64(i64* <ptr>, i64 <val>)

Overview:

This intrinsic loads the value stored in memory at ptr and yields the value from memory. It then

stores the value in val in the memory at ptr.

Arguments:

The llvm.atomic.swap intrinsic takes two arguments. Both the val argument and the result must

be integers of the same bit width. The first argument, ptr, must be a pointer to a value of this

integer type. The targets may only lower integer representations they support.

Atomic Operations and Synchronization Intrinsics

155

Semantics:

This intrinsic loads the value pointed to by ptr, yields it, and stores val back into ptr atomically.

This provides the equivalent of an atomic swap operation within the SSA framework.

Examples:

%mallocP = tail call i8* @malloc(i32 ptrtoint (i32* getelementptr (i32* null, i32 1) to i32))
%ptr = bitcast i8* %mallocP to i32*

store i32 4, %ptr

%val1 = add i32 4, 4
%result1 = call i32 @llvm.atomic.swap.i32.p0i32(i32* %ptr, i32 %val1)

; yields {i32}:result1 = 4
%stored1 = icmp eq i32 %result1, 4 ; yields {i1}:stored1 = true
%memval1 = load i32* %ptr ; yields {i32}:memval1 = 8

%val2 = add i32 1, 1
%result2 = call i32 @llvm.atomic.swap.i32.p0i32(i32* %ptr, i32 %val2)

; yields {i32}:result2 = 8

%stored2 = icmp eq i32 %result2, 8 ; yields {i1}:stored2 = true
%memval2 = load i32* %ptr ; yields {i32}:memval2 = 2

'llvm.atomic.load.add.*' Intrinsic

Syntax:

This is an overloaded intrinsic. You can use llvm.atomic.load.add on any integer bit width. Not

all targets support all bit widths however.

declare i8 @llvm.atomic.load.add.i8.p0i8(i8* <ptr>, i8 <delta>)
declare i16 @llvm.atomic.load.add.i16.p0i16(i16* <ptr>, i16 <delta>)
declare i32 @llvm.atomic.load.add.i32.p0i32(i32* <ptr>, i32 <delta>)
declare i64 @llvm.atomic.load.add.i64.p0i64(i64* <ptr>, i64 <delta>)

Overview:

This intrinsic adds delta to the value stored in memory at ptr. It yields the original value at ptr.

Chapter X. Intrinsic Functions

156

Arguments:

The intrinsic takes two arguments, the first a pointer to an integer value and the second an

integer value. The result is also an integer value. These integer types can have any bit width, but

they must all have the same bit width. The targets may only lower integer representations they

support.

Semantics:

This intrinsic does a series of operations atomically. It first loads the value stored at ptr. It then

adds delta, stores the result to ptr. It yields the original value stored at ptr.

Examples:

%mallocP = tail call i8* @malloc(i32 ptrtoint (i32* getelementptr (i32* null, i32 1) to i32))
%ptr = bitcast i8* %mallocP to i32*

store i32 4, %ptr
%result1 = call i32 @llvm.atomic.load.add.i32.p0i32(i32* %ptr, i32 4)

; yields {i32}:result1 = 4
%result2 = call i32 @llvm.atomic.load.add.i32.p0i32(i32* %ptr, i32 2)

; yields {i32}:result2 = 8
%result3 = call i32 @llvm.atomic.load.add.i32.p0i32(i32* %ptr, i32 5)

; yields {i32}:result3 = 10
%memval1 = load i32* %ptr ; yields {i32}:memval1 = 15

'llvm.atomic.load.sub.*' Intrinsic

Syntax:

This is an overloaded intrinsic. You can use llvm.atomic.load.sub on any integer bit width and

for different address spaces. Not all targets support all bit widths however.

declare i8 @llvm.atomic.load.sub.i8.p0i32(i8* <ptr>, i8 <delta>)
declare i16 @llvm.atomic.load.sub.i16.p0i32(i16* <ptr>, i16 <delta>)
declare i32 @llvm.atomic.load.sub.i32.p0i32(i32* <ptr>, i32 <delta>)
declare i64 @llvm.atomic.load.sub.i64.p0i32(i64* <ptr>, i64 <delta>)

Atomic Operations and Synchronization Intrinsics

157

Overview:

This intrinsic subtracts delta to the value stored in memory at ptr. It yields the original value at

ptr.

Arguments:

The intrinsic takes two arguments, the first a pointer to an integer value and the second an

integer value. The result is also an integer value. These integer types can have any bit width, but

they must all have the same bit width. The targets may only lower integer representations they

support.

Semantics:

This intrinsic does a series of operations atomically. It first loads the value stored at ptr. It then

subtracts delta, stores the result to ptr. It yields the original value stored at ptr.

Examples:

%mallocP = tail call i8* @malloc(i32 ptrtoint (i32* getelementptr (i32* null, i32 1) to i32))
%ptr = bitcast i8* %mallocP to i32*

store i32 8, %ptr
%result1 = call i32 @llvm.atomic.load.sub.i32.p0i32(i32* %ptr, i32 4)

; yields {i32}:result1 = 8
%result2 = call i32 @llvm.atomic.load.sub.i32.p0i32(i32* %ptr, i32 2)

; yields {i32}:result2 = 4
%result3 = call i32 @llvm.atomic.load.sub.i32.p0i32(i32* %ptr, i32 5)

; yields {i32}:result3 = 2
%memval1 = load i32* %ptr ; yields {i32}:memval1 = -3

Chapter X. Intrinsic Functions

158

'llvm.atomic.load.and.*' Intrinsic
'llvm.atomic.load.nand.*' Intrinsic
'llvm.atomic.load.or.*' Intrinsic
'llvm.atomic.load.xor.*' Intrinsic

Syntax:

These are overloaded intrinsics. You can use llvm.atomic.load_and, llvm.atomic.load_nand,

llvm.atomic.load_or, and llvm.atomic.load_xor on any integer bit width and for different

address spaces. Not all targets support all bit widths however.

declare i8 @llvm.atomic.load.and.i8.p0i8(i8* <ptr>, i8 <delta>)
declare i16 @llvm.atomic.load.and.i16.p0i16(i16* <ptr>, i16 <delta>)
declare i32 @llvm.atomic.load.and.i32.p0i32(i32* <ptr>, i32 <delta>)
declare i64 @llvm.atomic.load.and.i64.p0i64(i64* <ptr>, i64 <delta>)

declare i8 @llvm.atomic.load.or.i8.p0i8(i8* <ptr>, i8 <delta>)
declare i16 @llvm.atomic.load.or.i16.p0i16(i16* <ptr>, i16 <delta>)
declare i32 @llvm.atomic.load.or.i32.p0i32(i32* <ptr>, i32 <delta>)
declare i64 @llvm.atomic.load.or.i64.p0i64(i64* <ptr>, i64 <delta>)

declare i8 @llvm.atomic.load.nand.i8.p0i32(i8* <ptr>, i8 <delta>)
declare i16 @llvm.atomic.load.nand.i16.p0i32(i16* <ptr>, i16 <delta>)
declare i32 @llvm.atomic.load.nand.i32.p0i32(i32* <ptr>, i32 <delta>)
declare i64 @llvm.atomic.load.nand.i64.p0i32(i64* <ptr>, i64 <delta>)

declare i8 @llvm.atomic.load.xor.i8.p0i32(i8* <ptr>, i8 <delta>)
declare i16 @llvm.atomic.load.xor.i16.p0i32(i16* <ptr>, i16 <delta>)
declare i32 @llvm.atomic.load.xor.i32.p0i32(i32* <ptr>, i32 <delta>)
declare i64 @llvm.atomic.load.xor.i64.p0i32(i64* <ptr>, i64 <delta>)

Overview:

These intrinsics bitwise the operation (and, nand, or, xor) delta to the value stored in memory at

ptr. It yields the original value at ptr.

Arguments:

These intrinsics take two arguments, the first a pointer to an integer value and the second an

integer value. The result is also an integer value. These integer types can have any bit width, but

Atomic Operations and Synchronization Intrinsics

159

they must all have the same bit width. The targets may only lower integer representations they

support.

Semantics:

These intrinsics does a series of operations atomically. They first load the value stored at ptr.

They then do the bitwise operation delta, store the result to ptr. They yield the original value

stored at ptr.

Examples:

%mallocP = tail call i8* @malloc(i32 ptrtoint (i32* getelementptr (i32* null, i32 1) to i32))
%ptr = bitcast i8* %mallocP to i32*

store i32 0x0F0F, %ptr
%result0 = call i32 @llvm.atomic.load.nand.i32.p0i32(i32* %ptr, i32 0xFF)

; yields {i32}:result0 = 0x0F0F
%result1 = call i32 @llvm.atomic.load.and.i32.p0i32(i32* %ptr, i32 0xFF)

; yields {i32}:result1 = 0xFFFFFFF0
%result2 = call i32 @llvm.atomic.load.or.i32.p0i32(i32* %ptr, i32 0F)

; yields {i32}:result2 = 0xF0
%result3 = call i32 @llvm.atomic.load.xor.i32.p0i32(i32* %ptr, i32 0F)

; yields {i32}:result3 = FF
%memval1 = load i32* %ptr ; yields {i32}:memval1 = F0

'llvm.atomic.load.max.*' Intrinsic
'llvm.atomic.load.min.*' Intrinsic
'llvm.atomic.load.umax.*' Intrinsic
'llvm.atomic.load.umin.*' Intrinsic

Syntax:

These are overloaded intrinsics. You can use llvm.atomic.load_max, llvm.atomic.load_min,

llvm.atomic.load_umax, and llvm.atomic.load_umin on any integer bit width and for different

address spaces. Not all targets support all bit widths however.

declare i8 @llvm.atomic.load.max.i8.p0i8(i8* <ptr>, i8 <delta>)
declare i16 @llvm.atomic.load.max.i16.p0i16(i16* <ptr>, i16 <delta>)
declare i32 @llvm.atomic.load.max.i32.p0i32(i32* <ptr>, i32 <delta>)
declare i64 @llvm.atomic.load.max.i64.p0i64(i64* <ptr>, i64 <delta>)

Chapter X. Intrinsic Functions

160

declare i8 @llvm.atomic.load.min.i8.p0i8(i8* <ptr>, i8 <delta>)
declare i16 @llvm.atomic.load.min.i16.p0i16(i16* <ptr>, i16 <delta>)
declare i32 @llvm.atomic.load.min.i32.p0i32(i32* <ptr>, i32 <delta>)
declare i64 @llvm.atomic.load.min.i64.p0i64(i64* <ptr>, i64 <delta>)

declare i8 @llvm.atomic.load.umax.i8.p0i8(i8* <ptr>, i8 <delta>)
declare i16 @llvm.atomic.load.umax.i16.p0i16(i16* <ptr>, i16 <delta>)
declare i32 @llvm.atomic.load.umax.i32.p0i32(i32* <ptr>, i32 <delta>)
declare i64 @llvm.atomic.load.umax.i64.p0i64(i64* <ptr>, i64 <delta>)

declare i8 @llvm.atomic.load.umin.i8.p0i8(i8* <ptr>, i8 <delta>)
declare i16 @llvm.atomic.load.umin.i16.p0i16(i16* <ptr>, i16 <delta>)
declare i32 @llvm.atomic.load.umin.i32.p0i32(i32* <ptr>, i32 <delta>)
declare i64 @llvm.atomic.load.umin.i64.p0i64(i64* <ptr>, i64 <delta>)

Overview:

These intrinsics takes the signed or unsigned minimum or maximum of delta and the value

stored in memory at ptr. It yields the original value at ptr.

Arguments:

These intrinsics take two arguments, the first a pointer to an integer value and the second an

integer value. The result is also an integer value. These integer types can have any bit width, but

they must all have the same bit width. The targets may only lower integer representations they

support.

Semantics:

These intrinsics does a series of operations atomically. They first load the value stored at ptr.

They then do the signed or unsigned min or max delta and the value, store the result to ptr.

They yield the original value stored at ptr.

Examples:

%mallocP = tail call i8* @malloc(i32 ptrtoint (i32* getelementptr (i32* null, i32 1) to i32))
%ptr = bitcast i8* %mallocP to i32*

store i32 7, %ptr
%result0 = call i32 @llvm.atomic.load.min.i32.p0i32(i32* %ptr, i32 -2)

; yields {i32}:result0 = 7
%result1 = call i32 @llvm.atomic.load.max.i32.p0i32(i32* %ptr, i32 8)

Atomic Operations and Synchronization Intrinsics

161

; yields {i32}:result1 = -2
%result2 = call i32 @llvm.atomic.load.umin.i32.p0i32(i32* %ptr, i32 10)

; yields {i32}:result2 = 8
%result3 = call i32 @llvm.atomic.load.umax.i32.p0i32(i32* %ptr, i32 30)

; yields {i32}:result3 = 8
%memval1 = load i32* %ptr ; yields {i32}:memval1 = 30

Memory Use Markers

This class of intrinsics exists to information about the lifetime of memory objects and ranges

where variables are immutable.

'llvm.lifetime.start' Intrinsic

Syntax:

declare void @llvm.lifetime.start(i64 <size>, i8* nocapture <ptr>)

Overview:

The 'llvm.lifetime.start' intrinsic specifies the start of a memory object's lifetime.

Arguments:

The first argument is a constant integer representing the size of the object, or -1 if it is variable

sized. The second argument is a pointer to the object.

Semantics:

This intrinsic indicates that before this point in the code, the value of the memory pointed to by

ptr is dead. This means that it is known to never be used and has an undefined value. A load from

the pointer that precedes this intrinsic can be replaced with 'undef'.

'llvm.lifetime.end' Intrinsic

Syntax:

declare void @llvm.lifetime.end(i64 <size>, i8* nocapture <ptr>)

Chapter X. Intrinsic Functions

162

Overview:

The 'llvm.lifetime.end' intrinsic specifies the end of a memory object's lifetime.

Arguments:

The first argument is a constant integer representing the size of the object, or -1 if it is variable

sized. The second argument is a pointer to the object.

Semantics:

This intrinsic indicates that after this point in the code, the value of the memory pointed to by

ptr is dead. This means that it is known to never be used and has an undefined value. Any stores

into the memory object following this intrinsic may be removed as dead.

'llvm.invariant.start' Intrinsic

Syntax:

declare {}* @llvm.invariant.start(i64 <size>, i8* nocapture <ptr>)

Overview:

The 'llvm.invariant.start' intrinsic specifies that the contents of a memory object will not

change.

Arguments:

The first argument is a constant integer representing the size of the object, or -1 if it is variable

sized. The second argument is a pointer to the object.

Semantics:

This intrinsic indicates that until an llvm.invariant.end that uses the return value, the

referenced memory location is constant and unchanging.

Memory Use Markers

163

'llvm.invariant.end' Intrinsic

Syntax:

declare void @llvm.invariant.end({}* <start>, i64 <size>, i8* nocapture <ptr>)

Overview:

The 'llvm.invariant.end' intrinsic specifies that the contents of a memory object are mutable.

Arguments:

The first argument is the matching llvm.invariant.start intrinsic. The second argument is a

constant integer representing the size of the object, or -1 if it is variable sized and the third

argument is a pointer to the object.

Semantics:

This intrinsic indicates that the memory is mutable again.

General Intrinsics

This class of intrinsics is designed to be generic and has no specific purpose.

'llvm.var.annotation' Intrinsic

Syntax:

declare void @llvm.var.annotation(i8* <val>, i8* <str>, i8* <str>, i32 <int>)

Overview:

The 'llvm.var.annotation' intrinsic.

Arguments:

The first argument is a pointer to a value, the second is a pointer to a global string, the third is a

pointer to a global string which is the source file name, and the last argument is the line number.

Chapter X. Intrinsic Functions

164

Semantics:

This intrinsic allows annotation of local variables with arbitrary strings. This can be useful for

special purpose optimizations that want to look for these annotations. These have no other

defined use; they are ignored by code generation and optimization.

'llvm.annotation.*' Intrinsic

Syntax:

This is an overloaded intrinsic. You can use 'llvm.annotation' on any integer bit width.

declare i8 @llvm.annotation.i8(i8 <val>, i8* <str>, i8* <str>, i32 <int>)
declare i16 @llvm.annotation.i16(i16 <val>, i8* <str>, i8* <str>, i32 <int>)
declare i32 @llvm.annotation.i32(i32 <val>, i8* <str>, i8* <str>, i32 <int>)
declare i64 @llvm.annotation.i64(i64 <val>, i8* <str>, i8* <str>, i32 <int>)
declare i256 @llvm.annotation.i256(i256 <val>, i8* <str>, i8* <str>, i32 <int>)

Overview:

The 'llvm.annotation' intrinsic.

Arguments:

The first argument is an integer value (result of some expression), the second is a pointer to a

global string, the third is a pointer to a global string which is the source file name, and the last

argument is the line number. It returns the value of the first argument.

Semantics:

This intrinsic allows annotations to be put on arbitrary expressions with arbitrary strings. This

can be useful for special purpose optimizations that want to look for these annotations. These

have no other defined use; they are ignored by code generation and optimization.

'llvm.trap' Intrinsic

Syntax:

declare void @llvm.trap()

General Intrinsics

165

Overview:

The 'llvm.trap' intrinsic.

Arguments:

None.

Semantics:

This intrinsics is lowered to the target dependent trap instruction. If the target does not have a

trap instruction, this intrinsic will be lowered to the call of the abort() function.

'llvm.stackprotector' Intrinsic

Syntax:

declare void @llvm.stackprotector(i8* <guard>, i8** <slot>)

Overview:

The llvm.stackprotector intrinsic takes the guard and stores it onto the stack at slot. The stack

slot is adjusted to ensure that it is placed on the stack before local variables.

Arguments:

The llvm.stackprotector intrinsic requires two pointer arguments. The first argument is the

value loaded from the stack guard @__stack_chk_guard. The second variable is an alloca that

has enough space to hold the value of the guard.

Semantics:

This intrinsic causes the prologue/epilogue inserter to force the position of the AllocaInst stack

slot to be before local variables on the stack. This is to ensure that if a local variable on the stack

is overwritten, it will destroy the value of the guard. When the function exits, the guard on the

stack is checked against the original guard. If they are different, then the program aborts by

calling the __stack_chk_fail() function.

Chapter X. Intrinsic Functions

166

'llvm.objectsize' Intrinsic

Syntax:

declare i32 @llvm.objectsize.i32(i8* <object>, i1 <type>)
declare i64 @llvm.objectsize.i64(i8* <object>, i1 <type>)

Overview:

The llvm.objectsize intrinsic is designed to provide information to the optimizers to determine

at compile time whether a) an operation (like memcpy) will overflow a buffer that corresponds to

an object, or b) that a runtime check for overflow isn't necessary. An object in this context means

an allocation of a specific class, structure, array, or other object.

Arguments:

The llvm.objectsize intrinsic takes two arguments. The first argument is a pointer to or into

the object. The second argument is a boolean 0 or 1. This argument determines whether you

want the maximum (0) or minimum (1) bytes remaining. This needs to be a literal 0 or 1, variables

are not allowed.

Semantics:

The llvm.objectsize intrinsic is lowered to either a constant representing the size of the object

concerned, or i32/i64 -1 or 0, depending on the type argument, if the size cannot be

determined at compile time.

General Intrinsics

167

	LLVM Language Reference Manual
	Abstract
	Introduction
	Well-Formedness

	Identifiers
	High Level Structure
	Module Structure
	Linkage Types
	Calling Conventions
	Visibility Styles
	Named Types
	Global Variables
	Functions
	Syntax:

	Aliases
	Syntax:

	Named Metadata
	Syntax:

	Parameter Attributes
	Garbage Collector Names
	Function Attributes
	Module-Level Inline Assembly
	Data Layout
	Pointer Aliasing Rules
	Volatile Memory Accesses
	Memory Model for Concurrent Operations
	Atomic Memory Ordering Constraints

	Type System
	Type Classifications
	Primitive Types
	Integer Type
	Overview:
	Syntax:
	Examples:

	Floating Point Types
	X86mmx Type
	Overview:
	Syntax:

	Void Type
	Overview:
	Syntax:

	Label Type
	Overview:
	Syntax:

	Metadata Type
	Overview:
	Syntax:

	Derived Types
	Aggregate Types
	Array Type
	Overview:
	Syntax:
	Examples:

	Function Type
	Overview:
	Syntax:
	Examples:

	Structure Type
	Overview:
	Syntax:
	Examples:

	Opaque Structure Types
	Overview:
	Syntax:
	Examples:

	Pointer Type
	Overview:
	Syntax:
	Examples:

	Vector Type
	Overview:
	Syntax:
	Examples:

	Constants
	Simple Constants
	Complex Constants
	Global Variable and Function Addresses
	Undefined Values
	Trap Values
	Addresses of Basic Blocks
	Constant Expressions

	Other Values
	Inline Assembler Expressions
	Inline Asm Metadata

	Metadata Nodes and Metadata Strings

	Intrinsic Global Variables
	The 'llvm.used' Global Variable
	The 'llvm.compiler.used' Global Variable
	The 'llvm.global_ctors' Global Variable
	The 'llvm.global_dtors' Global Variable

	Instruction Reference
	Terminator Instructions
	'ret' Instruction
	Syntax:
	Overview:
	Arguments:
	Semantics:
	Example:

	'br' Instruction
	Syntax:
	Overview:
	Arguments:
	Semantics:
	Example:

	'switch' Instruction
	Syntax:
	Overview:
	Arguments:
	Semantics:
	Implementation:
	Example:

	'indirectbr' Instruction
	Syntax:
	Overview:
	Arguments:
	Semantics:
	Implementation:
	Example:

	'invoke' Instruction
	Syntax:
	Overview:
	Arguments:
	Semantics:
	Example:

	'unwind' Instruction
	Syntax:
	Overview:
	Semantics:

	'resume' Instruction
	Syntax:
	Overview:
	Arguments:
	Semantics:
	Example:

	'unreachable' Instruction
	Syntax:
	Overview:
	Semantics:

	Binary Operations
	'add' Instruction
	Syntax:
	Overview:
	Arguments:
	Semantics:
	Example:

	'fadd' Instruction
	Syntax:
	Overview:
	Arguments:
	Semantics:
	Example:

	'sub' Instruction
	Syntax:
	Overview:
	Arguments:
	Semantics:
	Example:

	'fsub' Instruction
	Syntax:
	Overview:
	Arguments:
	Semantics:
	Example:

	'mul' Instruction
	Syntax:
	Overview:
	Arguments:
	Semantics:
	Example:

	'fmul' Instruction
	Syntax:
	Overview:
	Arguments:
	Semantics:
	Example:

	'udiv' Instruction
	Syntax:
	Overview:
	Arguments:
	Semantics:
	Example:

	'sdiv' Instruction
	Syntax:
	Overview:
	Arguments:
	Semantics:
	Example:

	'fdiv' Instruction
	Syntax:
	Overview:
	Arguments:
	Semantics:
	Example:

	'urem' Instruction
	Syntax:
	Overview:
	Arguments:
	Semantics:
	Example:

	'srem' Instruction
	Syntax:
	Overview:
	Arguments:
	Semantics:
	Example:

	'frem' Instruction
	Syntax:
	Overview:
	Arguments:
	Semantics:
	Example:

	Bitwise Binary Operations
	'shl' Instruction
	Syntax:
	Overview:
	Arguments:
	Semantics:
	Example:

	'lshr' Instruction
	Syntax:
	Overview:
	Arguments:
	Semantics:
	Example:

	'ashr' Instruction
	Syntax:
	Overview:
	Arguments:
	Semantics:
	Example:

	'and' Instruction
	Syntax:
	Overview:
	Arguments:
	Semantics:
	Example:

	'or' Instruction
	Syntax:
	Overview:
	Arguments:
	Semantics:
	Example:

	'xor' Instruction
	Syntax:
	Overview:
	Arguments:
	Semantics:
	Example:

	Vector Operations
	'extractelement' Instruction
	Syntax:
	Overview:
	Arguments:
	Semantics:
	Example:

	'insertelement' Instruction
	Syntax:
	Overview:
	Arguments:
	Semantics:
	Example:

	'shufflevector' Instruction
	Syntax:
	Overview:
	Arguments:
	Semantics:
	Example:

	Aggregate Operations
	'extractvalue' Instruction
	Syntax:
	Overview:
	Arguments:
	Semantics:
	Example:

	'insertvalue' Instruction
	Syntax:
	Overview:
	Arguments:
	Semantics:
	Example:

	Memory Access and Addressing Operations
	'alloca' Instruction
	Syntax:
	Overview:
	Arguments:
	Semantics:
	Example:

	'load' Instruction
	Syntax:
	Overview:
	Arguments:
	Semantics:
	Examples:

	'store' Instruction
	Syntax:
	Overview:
	Arguments:
	Semantics:
	Example:

	'fence' Instruction
	Syntax:
	Overview:
	Arguments:
	Semantics:
	Example:

	'cmpxchg' Instruction
	Syntax:
	Overview:
	Arguments:
	Semantics:
	Example:

	'atomicrmw' Instruction
	Syntax:
	Overview:
	Arguments:
	Semantics:
	Example:

	'getelementptr' Instruction
	Syntax:
	Overview:
	Arguments:
	Semantics:
	Example:

	Conversion Operations
	'trunc .. to' Instruction
	Syntax:
	Overview:
	Arguments:
	Semantics:
	Example:

	'zext .. to' Instruction
	Syntax:
	Overview:
	Arguments:
	Semantics:
	Example:

	'sext .. to' Instruction
	Syntax:
	Overview:
	Arguments:
	Semantics:
	Example:

	'fptrunc .. to' Instruction
	Syntax:
	Overview:
	Arguments:
	Semantics:
	Example:

	'fpext .. to' Instruction
	Syntax:
	Overview:
	Arguments:
	Semantics:
	Example:

	'fptoui .. to' Instruction
	Syntax:
	Overview:
	Arguments:
	Semantics:
	Example:

	'fptosi .. to' Instruction
	Syntax:
	Overview:
	Arguments:
	Semantics:
	Example:

	'uitofp .. to' Instruction
	Syntax:
	Overview:
	Arguments:
	Semantics:
	Example:

	'sitofp .. to' Instruction
	Syntax:
	Overview:
	Arguments:
	Semantics:
	Example:

	'ptrtoint .. to' Instruction
	Syntax:
	Overview:
	Arguments:
	Semantics:
	Example:

	'inttoptr .. to' Instruction
	Syntax:
	Overview:
	Arguments:
	Semantics:
	Example:

	'bitcast .. to' Instruction
	Syntax:
	Overview:
	Arguments:
	Semantics:
	Example:

	Other Operations
	'icmp' Instruction
	Syntax:
	Overview:
	Arguments:
	Semantics:
	Example:

	'fcmp' Instruction
	Syntax:
	Overview:
	Arguments:
	Semantics:
	Example:

	'phi' Instruction
	Syntax:
	Overview:
	Arguments:
	Semantics:
	Example:

	'select' Instruction
	Syntax:
	Overview:
	Arguments:
	Semantics:
	Example:

	'call' Instruction
	Syntax:
	Overview:
	Arguments:
	Semantics:
	Example:

	'va_arg' Instruction
	Syntax:
	Overview:
	Arguments:
	Semantics:
	Example:

	'landingpad' Instruction
	Syntax:
	Overview:
	Arguments:
	Semantics:
	Example:

	Intrinsic Functions
	Variable Argument Handling Intrinsics
	'llvm.va_start' Intrinsic
	Syntax:
	Overview:
	Arguments:
	Semantics:

	'llvm.va_end' Intrinsic
	Syntax:
	Overview:
	Arguments:
	Semantics:

	'llvm.va_copy' Intrinsic
	Syntax:
	Overview:
	Arguments:
	Semantics:

	Accurate Garbage Collection Intrinsics
	'llvm.gcroot' Intrinsic
	Syntax:
	Overview:
	Arguments:
	Semantics:

	'llvm.gcread' Intrinsic
	Syntax:
	Overview:
	Arguments:
	Semantics:

	'llvm.gcwrite' Intrinsic
	Syntax:
	Overview:
	Arguments:
	Semantics:

	Code Generator Intrinsics
	'llvm.returnaddress' Intrinsic
	Syntax:
	Overview:
	Arguments:
	Semantics:

	'llvm.frameaddress' Intrinsic
	Syntax:
	Overview:
	Arguments:
	Semantics:

	'llvm.stacksave' Intrinsic
	Syntax:
	Overview:
	Semantics:

	'llvm.stackrestore' Intrinsic
	Syntax:
	Overview:
	Semantics:

	'llvm.prefetch' Intrinsic
	Syntax:
	Overview:
	Arguments:
	Semantics:

	'llvm.pcmarker' Intrinsic
	Syntax:
	Overview:
	Arguments:
	Semantics:

	'llvm.readcyclecounter' Intrinsic
	Syntax:
	Overview:
	Semantics:

	Standard C Library Intrinsics
	'llvm.memcpy' Intrinsic
	Syntax:
	Overview:
	Arguments:
	Semantics:

	'llvm.memmove' Intrinsic
	Syntax:
	Overview:
	Arguments:
	Semantics:

	'llvm.memset.*' Intrinsics
	Syntax:
	Overview:
	Arguments:
	Semantics:

	'llvm.sqrt.*' Intrinsic
	Syntax:
	Overview:
	Arguments:
	Semantics:

	'llvm.powi.*' Intrinsic
	Syntax:
	Overview:
	Arguments:
	Semantics:

	'llvm.sin.*' Intrinsic
	Syntax:
	Overview:
	Arguments:
	Semantics:

	'llvm.cos.*' Intrinsic
	Syntax:
	Overview:
	Arguments:
	Semantics:

	'llvm.pow.*' Intrinsic
	Syntax:
	Overview:
	Arguments:
	Semantics:

	'llvm.exp.*' Intrinsic
	Syntax:
	Overview:
	Arguments:
	Semantics:

	'llvm.log.*' Intrinsic
	Syntax:
	Overview:
	Arguments:
	Semantics:

	'llvm.fma.*' Intrinsic
	Syntax:
	Overview:
	Arguments:
	Semantics:

	Bit Manipulation Intrinsics
	'llvm.bswap.*' Intrinsics
	Syntax:
	Overview:
	Semantics:

	'llvm.ctpop.*' Intrinsic
	Syntax:
	Overview:
	Arguments:
	Semantics:

	'llvm.ctlz.*' Intrinsic
	Syntax:
	Overview:
	Arguments:
	Semantics:

	'llvm.cttz.*' Intrinsic
	Syntax:
	Overview:
	Arguments:
	Semantics:

	Arithmetic with Overflow Intrinsics
	'llvm.sadd.with.overflow.*' Intrinsics
	Syntax:
	Overview:
	Arguments:
	Semantics:
	Examples:

	'llvm.uadd.with.overflow.*' Intrinsics
	Syntax:
	Overview:
	Arguments:
	Semantics:
	Examples:

	'llvm.ssub.with.overflow.*' Intrinsics
	Syntax:
	Overview:
	Arguments:
	Semantics:
	Examples:

	'llvm.usub.with.overflow.*' Intrinsics
	Syntax:
	Overview:
	Arguments:
	Semantics:
	Examples:

	'llvm.smul.with.overflow.*' Intrinsics
	Syntax:
	Overview:
	Arguments:
	Semantics:
	Examples:

	'llvm.umul.with.overflow.*' Intrinsics
	Syntax:
	Overview:
	Arguments:
	Semantics:
	Examples:

	Half Precision Floating Point Intrinsics
	'llvm.convert.to.fp16' Intrinsic
	Syntax:
	Overview:
	Arguments:
	Semantics:
	Examples:

	'llvm.convert.from.fp16' Intrinsic
	Syntax:
	Overview:
	Arguments:
	Semantics:
	Examples:

	Debugger Intrinsics
	Exception Handling Intrinsics
	Trampoline Intrinsics
	'llvm.init.trampoline' Intrinsic
	Syntax:
	Overview:
	Arguments:
	Semantics:

	'llvm.adjust.trampoline' Intrinsic
	Syntax:
	Overview:
	Arguments:
	Semantics:

	Atomic Operations and Synchronization Intrinsics
	'llvm.memory.barrier' Intrinsic
	Syntax:
	Overview:
	Arguments:
	Semantics:
	Example:

	'llvm.atomic.cmp.swap.*' Intrinsic
	Syntax:
	Overview:
	Arguments:
	Semantics:
	Examples:

	'llvm.atomic.swap.*' Intrinsic
	Syntax:
	Overview:
	Arguments:
	Semantics:
	Examples:

	'llvm.atomic.load.add.*' Intrinsic
	Syntax:
	Overview:
	Arguments:
	Semantics:
	Examples:

	'llvm.atomic.load.sub.*' Intrinsic
	Syntax:
	Overview:
	Arguments:
	Semantics:
	Examples:

	'llvm.atomic.load.and.*' Intrinsic 'llvm.atomic.load.nand.*' Intrinsic 'llvm.atomic.load.or.*' Intrinsic 'llvm.atomic.load.xor.*' Intrinsic
	Syntax:
	Overview:
	Arguments:
	Semantics:
	Examples:

	'llvm.atomic.load.max.*' Intrinsic 'llvm.atomic.load.min.*' Intrinsic 'llvm.atomic.load.umax.*' Intrinsic 'llvm.atomic.load.umin.*' Intrinsic
	Syntax:
	Overview:
	Arguments:
	Semantics:
	Examples:

	Memory Use Markers
	'llvm.lifetime.start' Intrinsic
	Syntax:
	Overview:
	Arguments:
	Semantics:

	'llvm.lifetime.end' Intrinsic
	Syntax:
	Overview:
	Arguments:
	Semantics:

	'llvm.invariant.start' Intrinsic
	Syntax:
	Overview:
	Arguments:
	Semantics:

	'llvm.invariant.end' Intrinsic
	Syntax:
	Overview:
	Arguments:
	Semantics:

	General Intrinsics
	'llvm.var.annotation' Intrinsic
	Syntax:
	Overview:
	Arguments:
	Semantics:

	'llvm.annotation.*' Intrinsic
	Syntax:
	Overview:
	Arguments:
	Semantics:

	'llvm.trap' Intrinsic
	Syntax:
	Overview:
	Arguments:
	Semantics:

	'llvm.stackprotector' Intrinsic
	Syntax:
	Overview:
	Arguments:
	Semantics:

	'llvm.objectsize' Intrinsic
	Syntax:
	Overview:
	Arguments:
	Semantics:

